數(shù)姐有話(huà)
對(duì)于初二的同學(xué)來(lái)說(shuō),三角形與全等三角形,才是同學(xué)們正式接觸幾何,而在這塊內(nèi)容中,輔助線又是必不可少的,所以,希望同學(xué)們好好學(xué)習(xí)這塊內(nèi)容,對(duì)于以后學(xué)習(xí)更難的幾何知識(shí)打下基礎(chǔ)!
例:已知D為△ABC內(nèi)任一點(diǎn),求證:∠BDC>∠BAC
證明:
(一):延長(zhǎng)BD交AC于E,
∵∠BDC是△EDC
的外角,
∴∠BDC>∠DEC
同理:∠DEC>∠BAC
∴∠BDC>∠BAC
證法(二):連結(jié)AD,并延長(zhǎng)交BC于F
∵∠BDF是△ABD的外角,
∴∠BDF>∠BAD
同理∠CDF>∠CAD
∴∠BDF+∠CDF>∠BAD+∠CAD
即:∠BDC>∠BAC
例:已知,如圖,AD為△ABC的中線且∠1 = ∠2,∠3 = ∠4,
求證:BE+CF>EF
證明:
在DA上截取DN = DB,連結(jié)NE、NF,
則DN= DC
在△BDE和△NDE中,
DN = DB
∠1 = ∠2
ED = ED
∴△BDE≌△NDE
∴BE = NE
同理可證:CF = NF
在△EFN中,EN+FN>EF
∴BE+CF>EF
例:已知,如圖,AD為△ABC的中線,且∠1 = ∠2,∠3 = ∠4,求證:BE+CF>EF
證明:
延長(zhǎng)ED到M,使DM = DE,連結(jié)CM、FM
△BDE和△CDM中,
BD = CD
∠1 = ∠5
ED = MD
∴△BDE≌△CDM
∴CM = BE
又∵∠1 = ∠2,∠3 = ∠4
∠1+∠2+∠3 + ∠4 = 180°
∴∠3 +∠2 = 90°
即∠EDF = 90°
∴∠FDM = ∠EDF = 90°
△EDF和△MDF中
ED = MD
∠FDM = ∠EDF
DF = DF
∴△EDF≌△MDF
∴EF = MF
∵在△CMF中,CF+CM >MF
BE+CF>EF
(此題也可加倍FD,證法同上)
例:已知,如圖,AD為△ABC的中線,求證:AB+AC>2AD
證明:
延長(zhǎng)AD至E,使DE = AD,連結(jié)BE
∵AD為△ABC的中線
∴BD = CD
在△ACD和△EBD中
BD = CD
∠1 = ∠2
AD = ED
∴△ACD≌△EBD
∵△ABE中有AB+BE>AE
∴AB+AC>2AD
截長(zhǎng)法:在較長(zhǎng)的線段上截取一條線段等于較短線段;
補(bǔ)短法:延長(zhǎng)較短線段和較長(zhǎng)線段相等.
這兩種方法統(tǒng)稱(chēng)截長(zhǎng)補(bǔ)短法.
當(dāng)已知或求證中涉及到線段a、b、c、d有下列情況之一時(shí)用此種方法:
①a>b
②a±b = c
③a±b = c±d
例:已知,如圖,在△ABC中,AB>AC,∠1 = ∠2,P為AD上任一點(diǎn),
求證:AB-AC>PB-PC
證明:
⑴截長(zhǎng)法:在AB上截取AN = AC,連結(jié)PN
在△APN和△APC中,
AN = AC
∠1 = ∠2
AP = AP
∴△APN≌△APC
∴PC = PN
∵△BPN中有PB-PC<BN
∴PB-PC<AB-AC
⑵補(bǔ)短法:延長(zhǎng)AC至M,使AM = AB,連結(jié)PM
在△ABP和△AMP中
AB = AM
∠1 = ∠2
AP = AP
∴△ABP≌△AMP
∴PB = PM
又∵在△PCM中有CM >PM-PC
∴AB-AC>PB-PC
練習(xí):
1.已知,在△ABC中,∠B = 60°,AD、CE是△ABC的角平分線,并且它們交于點(diǎn)O
求證:AC = AE+CD
2.已知,如圖,AB∥CD,∠1 = ∠2 ,∠3 = ∠4.
求證:BC = AB+CD
①觀察要證線段在哪兩個(gè)可能全等的三角形中,然后證這兩個(gè)三角形全等。
②若圖中沒(méi)有全等三角形,可以把求證線段用和它相等的線段代換,再證它們所在的三角形全等.
③如果沒(méi)有相等的線段代換,可設(shè)法作輔助線構(gòu)造全等三角形.
例:如圖,已知,BE、CD相交于F,∠B = ∠C,∠1 = ∠2,求證:DF = EF
證明:∵∠ADF =∠B+∠3
∠AEF = ∠C+∠4
又∵∠3 = ∠4
∠B = ∠C
∴∠ADF = ∠AEF
在△ADF和△AEF中
∠ADF = ∠AEF
∠1 = ∠2
AF = AF
∴△ADF≌△AEF
∴DF = EF
例:已知,如圖Rt△ABC中,AB = AC,∠BAC = 90°,過(guò)A作任一條直線AN,作BD⊥AN于D,CE⊥AN于E,求證:DE = BD-CE
證明:
∴∠1+∠2 = 90o ∠1+∠3 = 90°
∴∠2 = ∠3
∵BD⊥AN CE⊥AN
∴∠BDA =∠AEC = 90°
在△ABD和△CAE中,
∠BDA =∠AEC
∠2 = ∠3
AB = AC
∴△ABD≌△CAE
∴BD = AE且AD = CE
∴AE-AD = BD-CE
∴DE = BD-CE
例:AD為△ABC的中線,且CF⊥AD于F,BE⊥AD的延長(zhǎng)線于E
求證:BE = CF
證明:(略)
例:已知AC = BD,AD⊥AC于A,BCBD于B
求證:AD = BC
證明:分別延長(zhǎng)DA、CB交于點(diǎn)E
∵AD⊥AC BC⊥BD
∴∠CAE = ∠DBE = 90°
在△DBE和△CAE中
∠DBE =∠CAE
BD = AC
∠E =∠E
∴△DBE≌△CAE
∴ED = EC,EB = EA
∴ED-EA = EC- EB
∴AD = BC
例:已知,如圖,AB∥CD,AD∥BC
求證:AB = CD
證明:
∵AB∥CD,AD∥BC
∴∠1 = ∠2
在△ABC和△CDA中,
∠1 = ∠2
AC = CA
∠3 = ∠4
∴△ABC≌△CDA
∴AB = CD
練習(xí):
已知,如圖,AB = DC,AD = BC,DE = BF,
求證:BE = DF
例:已知,如圖,在Rt△ABC中,AB = AC,∠BAC = 90°,∠1 = ∠2 ,CE⊥BD的延長(zhǎng)線于E
求證:BD = 2CE
證明:
分別
延長(zhǎng)BA、CE交于F
∵BE⊥CF
∴∠BEF =∠BEC = 90°
在△BEF和△BEC中
∠1 = ∠2
BE = BE
∠BEF =∠BEC
∴△BEF≌△BEC
∴CE = FE =1/2CF
∵∠BAC = 90° , BE⊥CF
∴∠BAC = ∠CAF = 90°
∠1+∠BDA = 90°
∠1+∠BFC = 90°
∠BDA = ∠BFC
在△ABD和△ACF中
∠BAC = ∠CAF
∠BDA = ∠BFC
AB = AC
∴△ABD≌△ACF
∴BD = CF
∴BD = 2CE
練習(xí):
已知,如圖,∠ACB = 3∠B,∠1 =∠2,CD⊥AD于D,
求證:AB-AC = 2CD
例:已知,如圖,AC、BD相交于O,且AB = DC,AC = BD,
求證:∠A = ∠D
證明:(連結(jié)BC,過(guò)程略)
例:已知,如圖,AB = DC,∠A = ∠D
求證:∠ABC = ∠DCB
證明:分別取AD、BC中點(diǎn)N、M,
連結(jié)NB、NM、NC(過(guò)程略)
例:已知,如圖,∠1 = ∠2 ,P為BN上一點(diǎn),且PD⊥BC于D,AB+BC = 2BD,
求證:∠BAP+∠BCP = 180°
證明:過(guò)P作PE⊥BA于E
∵PD⊥BC,∠1 = ∠2
∴PE = PD
在Rt△BPE和Rt△BPD中
BP = BP
PE = PD
∴Rt△BPE≌Rt△BPD
∴BE = BD
∵AB+BC = 2BD,BC = CD+BD,AB = BE-AE
∴AE = CD
∵PE⊥BE,PD⊥BC
∠PEB =∠PDC = 90°
在△PEA和△PDC中
PE = PD
∠PEB =∠PDC
AE =CD
∴△PEA≌△PDC
∴∠PCB = ∠EAP
∵∠BAP+∠EAP = 180°
∴∠BAP+∠BCP = 180°
練習(xí):
1.已知,如圖,PA、PC分別是△ABC外角∠MAC與∠NCA的平分線,它們交于P,PD⊥BM于M,PF⊥BN于F,求證:BP為∠MBN的平分線
2. 已知,如圖,在△ABC中,∠ABC =100o,∠ACB = 20°,CE是∠ACB的平分線,D是AC上一點(diǎn),若∠CBD = 20°,求∠CED的度數(shù)。
⑴作頂角的平分線,底邊中線,底邊高線
例:已知,如圖,AB = AC,BD⊥AC于D,
求證:∠BAC = 2∠DBC
證明:
(方法一)作∠BAC的平分線AE,交BC于E,則∠1 = ∠2 = 1/2∠BAC
又∵AB = AC
∴AE⊥BC
∴∠2+∠ACB = 90°
∵BD⊥AC
∴∠DBC+∠ACB = 90°
∴∠2 = ∠DBC
∴∠BAC = 2∠DBC
(方法二)過(guò)A作AE⊥BC于E(過(guò)程略)
(方法三)取BC中點(diǎn)E,連結(jié)AE(過(guò)程略)
⑵有底邊中點(diǎn)時(shí),常作底邊中線
例:已知,如圖,△ABC中,AB = AC,D為BC中點(diǎn),DE⊥AB于E,DF⊥AC于F,
求證:DE = DF
證明:連結(jié)AD.
∵D為BC中點(diǎn),
∴BD = CD
又∵AB =AC
∴AD平分∠BAC
∵DE⊥AB,DF⊥AC
∴DE = DF
⑶將腰延長(zhǎng)一倍,構(gòu)造直角三角形解題
例:已知,如圖,△ABC中,AB = AC,在BA延長(zhǎng)線和AC上各取一點(diǎn)E、F,使AE = AF,求證:EF⊥BC
證明:延長(zhǎng)BE到N,使AN = AB,連結(jié)CN,則AB = AN = AC
∴∠B = ∠ACB, ∠ACN = ∠ANC
∵∠B+∠ACB+∠ACN+∠ANC = 180°
∴2∠BCA+2∠ACN = 180°
∴∠BCA+∠ACN = 90°
即∠BCN = 90°
∴NC⊥BC
∵AE = AF
∴∠AEF = ∠AFE
又∵∠BAC = ∠AEF +∠AFE
∠BAC = ∠ACN +∠ANC
∴∠BAC =2∠AEF = 2∠ANC
∴∠AEF = ∠ANC
∴EF∥NC
∴EF⊥BC
⑷常過(guò)一腰上的某一已知點(diǎn)做另一腰的平行線
例:已知,如圖,在△ABC中,AB = AC,D在AB上,E在AC延長(zhǎng)線上,且BD = CE,連結(jié)DE交BC于F
求證:DF = EF
證明:(證法一)
過(guò)D作DN∥AE,交BC于N,則∠DNB = ∠ACB,∠NDE = ∠E,
∵AB = AC,
∴∠B = ∠ACB
∴∠B =∠DNB
∴BD = DN
又∵BD = CE
∴DN = EC
在△DNF和△ECF中
∠1 = ∠2
∠NDF =∠E
DN = EC
∴△DNF≌△ECF
∴DF = EF
(證法二)
⑸常過(guò)一腰上的某一已知點(diǎn)做底的平行線
例:已知,如圖,△ABC中,AB =AC,E在AC上,D在BA延長(zhǎng)線上,且AD = AE,連結(jié)DE
求證:DE⊥BC
證明:(證法一)過(guò)點(diǎn)E作EF∥BC交AB于F,則
∠AFE =∠B
∠AEF =∠C
∵AB = AC
∴∠B =∠C
∴∠AFE =∠AEF
∵AD = AE
∴∠AED =∠ADE
又∵∠AFE+∠AEF+∠AED+∠ADE = 180o
∴2∠AEF+2∠AED = 90o
即∠FED = 90o
∴DE⊥FE
又∵EF∥BC
∴DE⊥BC
(證法二)過(guò)點(diǎn)D作DN∥BC交CA的延長(zhǎng)線于N,(過(guò)程略)
(證法三)過(guò)點(diǎn)A作AM∥BC交DE于M,(過(guò)程略)
⑹常將等腰三角形轉(zhuǎn)化成特殊的等腰三角形------等邊三角形
例:已知,如圖,△ABC中,AB = AC,∠BAC = 80o ,P為形內(nèi)一點(diǎn),若∠PBC = 10o ∠PCB = 30o 求∠PAB的度數(shù).
解法一:以AB為一邊作等邊三角形,連結(jié)CE
則∠BAE =∠ABE = 60o
AE = AB = BE
∵AB = AC
∴AE = AC ∠ABC =∠ACB
∴∠AEC =∠ACE
∵∠EAC =∠BAC-∠BAE
= 80°-60° = 20°
∴∠ACE = 1/2(180°-∠EAC)= 80°
∵∠ACB= 1/2(180°-∠BAC)= 50°
∴∠BCE =∠ACE-∠ACB
= 80°-50° = 30°
∵∠PCB = 30°
∴∠PCB = ∠BCE
∵∠ABC =∠ACB = 50°, ∠ABE = 60°
∴∠EBC =∠ABE-∠ABC = 60°-50° =10°
∵∠PBC = 10°
∴∠PBC = ∠EBC
在△PBC和△EBC中
∠PBC = ∠EBC
BC = BC
∠PCB = ∠BCE
∴△PBC≌△EBC
∴BP = BE
∵AB = BE
∴AB = BP
∴∠BAP =∠BPA
∵∠ABP =∠ABC-∠PBC = 50°-10° = 40°
∴∠PAB = 1/2(180°-∠ABP)= 70°
解法二:
以AC為一邊作等邊三角形,證法同一。
解法三:
以BC為一邊作等邊三角形△BCE,連結(jié)AE,則
EB = EC = BC,∠BEC =∠EBC = 60o
∵EB = EC
∴E在BC的中垂線上
同理A在BC的中垂線上
∴EA所在的直線是BC的中垂線
∴EA⊥BC
∠AEB = 1/2∠BEC = 30° =∠PCB
由解法一知:∠ABC = 50°
∴∠ABE = ∠EBC-∠ABC = 10°=∠PBC
∵∠ABE =∠PBC,BE = BC,∠AEB =∠PCB
∴△ABE≌△PBC
∴AB = BP
∴∠BAP =∠BPA
∵∠ABP =∠ABC-∠PBC = 50°-10°= 40°
∴∠PAB = 1/2(180o-∠ABP) = 1/2(180°-40°)= 70°
⑴構(gòu)造等腰三角形使二倍角是等腰三角形的頂角的外角
例:
已知,如圖,在△ABC中,∠1 = ∠2,∠ABC = 2∠C,
求證:AB+BD = AC
證明:延長(zhǎng)AB到E,使BE = BD,連結(jié)DE
則∠BED = ∠BDE
∵∠ABD =∠E+∠BDE
∴∠ABC =2∠E
∵∠ABC = 2∠C
∴∠E = ∠C
在△AED和△ACD中
∠E = ∠C
∠1 = ∠2
AD = AD
∴△AED≌△ACD
∴AC = AE
∵AE = AB+BE
∴AC = AB+BE
即AB+BD = AC
⑵平分二倍角
例:已知,如圖,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC
求證:∠ABC = ∠ACB
證明:作∠BAC的平分線AE交BC于E,則∠BAE = ∠CAE = ∠DBC
∵BD⊥AC
∴∠CBD +∠C = 90o
∴∠CAE+∠C= 90o
∵∠AEC= 180o-∠CAE-∠C= 90o
∴AE⊥BC
∴∠ABC+∠BAE = 90o
∵∠CAE+∠C= 90o
∠BAE = ∠CAE
∴∠ABC = ∠ACB
⑶加倍小角
例:已知,如圖,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC
求證:∠ABC = ∠ACB
證明:作∠FBD =∠DBC,BF交AC于F(過(guò)程略)
例:已知,如圖,△ABC中,AB = AC,∠BAC = 120o,EF為AB的垂直平分線,EF交BC于F,交AB于E
求證:BF =1/2FC
證明:連結(jié)AF,則AF = BF
∴∠B =∠FAB
∵AB = AC
∴∠B =∠C
∵∠BAC = 120o
∴∠B =∠C∠BAC =1/2(180°-∠BAC) = 30°
∴∠FAB = 30°
∴∠FAC =∠BAC-∠FAB = 120°-30° =90°
又∵∠C = 30°
∴AF = 1/2FC
∴BF =1/2FC
練習(xí):
已知,如圖,在△ABC中,∠CAB的平分線AD與BC的垂直平分線DE交于點(diǎn)D,DM⊥AB于M,DN⊥AC延長(zhǎng)線于N
求證:BM = CN
例:已知,如圖,在△ABC中,∠B =2∠C,AD⊥BC于D
求證:CD = AB+BD
證明:
(一)在CD上截取DE = DB,連結(jié)AE,則AB = AE
∴∠B =∠AEB
∵∠B = 2∠C
∴∠AEB = 2∠C
又∵∠AEB = ∠C+∠EAC
∴∠C =∠EAC
∴AE = CE
又∵CD = DE+CE
∴CD = BD+AB
(二)延長(zhǎng)CB到F,使DF = DC,連結(jié)AF則AF =AC(過(guò)程略)
例:已知,如圖,在△ABC中,BC = 2AB, ∠ABC = 2∠C,BD = CD
求證:△ABC為直角三角形
證明:過(guò)D作DE⊥BC,交AC于E,連結(jié)BE,則BE = CE,
∴∠C =∠EBC
∵∠ABC = 2∠C
∴∠ABE =∠EBC
∵BC = 2AB,BD = CD
∴BD = AB
在△ABE和△DBE中
AB = BD
∠ABE =∠EBC
BE = BE
∴△ABE≌△DBE
∴∠BAE = ∠BDE
∵∠BDE = 90°
∴∠BAE = 90°
即△ABC為直角三角形
例:已知,如圖,在△ABC中,∠A = 90°,DE為BC的垂直平分線
求證:BE2-AE2 = AC2
證明:連結(jié)CE,則BE = CE
∵∠A = 90°
∴AE2+AC2 = EC2
∴AE2+AC2= BE2
∴BE2-AE2 = AC2
練習(xí):
已知,如圖,在△ABC中,∠BAC = 90°,AB = AC,P為BC上一點(diǎn)
求證:PB2+PC2= 2PA2
例:已知,如圖,在△ABC中,∠B = 45°,∠C = 30°,AB =根號(hào)2,求AC的長(zhǎng).
解:過(guò)A作AD⊥BC于D
∴∠B+∠BAD = 90°,
∵∠B = 45o,∠B = ∠BAD = 45°,
∴AD = BD
∵AB2 = AD2+BD2,AB =根號(hào)2
∴AD = 1
∵∠C = 30°,AD⊥BC
∴AC = 2AD = 2
聯(lián)系客服