九色国产,午夜在线视频,新黄色网址,九九色综合,天天做夜夜做久久做狠狠,天天躁夜夜躁狠狠躁2021a,久久不卡一区二区三区

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
spark入門教程及經(jīng)驗總結

問題導讀

1.cluster mode 模式運行包含哪些流程?
2.yarn mode 運行模式有什么特點?
3..在關閉http file server進程時,遇到什么錯誤?










一、環(huán)境準備
測試環(huán)境使用的cdh提供的quickstart vm
hadoop版本:2.5.0-cdh5.2.0
spark版本:1.1.0

二、Hello Spark
  • 將/usr/lib/spark/examples/lib/spark-examples-1.1.0-cdh5.2.0-hadoop2.5.0-cdh5.2.0.jar 移動到/usr/lib/spark/lib/spark-examples-1.1.0-cdh5.2.0-hadoop2.5.0-cdh5.2.0.jar
  • 執(zhí)行程序  ./bin/run-example SparkPi 10
  • 日志分析:
    • 程序檢查ip,host,SecurityManager
    • 啟動sparkDriver。通過akka工具啟動一個tcp監(jiān)聽 [akka.tcp://sparkDriver@192.168.128.131:42960]
    • 啟動MapOutputTracker,BlockManagerMaster
    • 啟動一個block manager,也就是ConnectionManagerId(192.168.128.131,41898),其中包含一個MemoryStore
    • 連接 HeartbeatReceiver: akka.tcp://sparkDriver@192.168.128.131:42960/user/HeartbeatReceiver
    • Starting job: reduce
      • 分析中job,有stage 0 (MappedRDD[1])
      • 添加并啟動運行task  Submitting 10 missing tasks from Stage 0
      • 通過http協(xié)議獲取程序jar包,并添加到classloader
      • 完成task后,將結果發(fā)送到driver
      • scheduler.DAGScheduler完成Stage的所有task
      • 在localhost的scheduler.TaskSetManager收集完成的task
      • job finished

    • Stop Spark Web UI
    • Stop DAGScheduler
    • MapOutputTrackerActor stopped
    • stop ConnectionManager
    • MemoryStore cleared
    • BlockManager stopped
    • Shutting down remote daemon.
    • Successfully stopped SparkContext


三、cluster mode 運行模式


運行流程::
  • SparkContext 連接cluster Manager (either Spark’s own standalone cluster manager or Mesos/YARN),
  • spark Application向Cluster Manager請求資源 executors (運行計算和存儲數(shù)據(jù)的線程)
  • 將程序Jar包或者python程序分發(fā)到executors
  • SparkContext發(fā)送tasks到executors上運行

Cluster Manager 類型:
  • Standalone Spark 內(nèi)置的cluster manager,可以快速啟動一個集群
  • Apache Mesos 一個通用的Cluster manger,可以運行hadoop的Mapreduce和其他Service applications
  • Hadoop YARN Hadoop 2中的Clustger Manager


主要概念
Term
Meaning
Application
User program built on Spark. Consists of a driver program and executors on the cluster.
Application jar
A jar containing the user's Spark application. In some cases users will want to create an "uber jar" containing their application along with its dependencies. The user's jar should never include Hadoop or Spark libraries, however, these will be added at runtime.
Driver program
The process running the main() function of the application and creating the SparkContext
Cluster manager
An external service for acquiring resources on the cluster (e.g. standalone manager, Mesos, YARN)
Deploy mode
Distinguishes where the driver process runs. In "cluster" mode, the framework launches the driver inside of the cluster. In "client" mode, the submitter launches the driver outside of the cluster.
Worker node
Any node that can run application code in the cluster
Executor
A process launched for an application on a worker node, that runs tasks and keeps data in memory or disk storage across them. Each application has its own executors.
Task
A unit of work that will be sent to one executor
Job
A parallel computation consisting of multiple tasks that gets spawned in response to a Spark action (e.g. save, collect); you'll see this term used in the driver's logs.
Stage
Each job gets divided into smaller sets of tasks called stages that depend on each other (similar to the map and reduce stages in MapReduce); you'll see this term used in the driver's logs.



四、yarn mode 運行模式

yarn集群方式運行
spark-submit
--classcom.wankun.sparktest.WordCount
--masteryarn-cluster
target/sparktest-1.0.0.jar/tmp/test1 2


運行命令:
yarn-cluster
spark-submit --classcom.wankun.sparktest.WordCount --master yarn-cluster --driver-memory 385m--executor-memory 410m target/sparktest-1.0.0.jar /tmp/test1 2

特點:
  • 運行成功后,無任何輸出,輸出都在日志中
  • 程序的運行有yarn來控制,spark只是檢測程序的狀態(tài),狀態(tài)為success,即運行成功

yarn-client
spark-submit--class com.wankun.sparktest.WordCount --master yarn-client --driver-memory 385m --executor-memory 410m  target/sparktest-1.0.0.jar /tmp/test1 2

yarn-cluster 的driver programcontainer 是在集群里的,yarn-client 的driver programcontainer 是spark在集群外自己啟動的

運行原理:
scheduler.DAGScheduler,scheduler.TaskSetManager,cluster.YarnClusterScheduler
  • spark向RM申請一個Container作為調(diào)度container(此時啟動的SparkUI端口隨機)
  • 請求Executors(默認2個, Container request (host: Any, priority: 1, capability: <memory:1408, vCores:1>)
  • Received new token for : quickstart.cloudera:48622
  • 根據(jù)resources and environment and commands, open proxy
  • start progress reporter
  • 在YarnClusterSchedulerBackend,BlockManagerMasterActor,MemoryStore等服務啟動
  • 在SparkContext中Starting job
  • TasksetManager中starting task with TID 0,1
  • 任務調(diào)度由scheduler.DAGScheduler執(zhí)行,根據(jù)job和job中tasks進行任務執(zhí)行,Taskset will be removed ,when completed
  • job全部執(zhí)行結束,Stopped Spark web UI,Stopping DAGScheduler,Shutting down all executors


executors
  • executors應該是可以重用
  • executors通過CoarseGrainedExecutorBackend 獲取分配的任務,關閉的時候,Driver commanded a shutdown
  • 在關閉http file server進程時,遇到錯誤
14/11/05 20:17:40 WARN thread.QueuedThreadPool: 1 threads could not be stopped
14/11/05 20:17:40 INFO thread.QueuedThreadPool: Couldn't stop Thread[qtp26737473-36 Acceptor0 SocketConnector@0.0.0.0:39213,5,main]
14/11/05 20:17:41 INFO thread.QueuedThreadPool:  at java.net.PlainSocketImpl.socketAccept(Native Method)
14/11/05 20:17:41 INFO thread.QueuedThreadPool:  at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:398)
14/11/05 20:17:41 INFO thread.QueuedThreadPool:  at java.net.ServerSocket.implAccept(ServerSocket.java:530)
14/11/05 20:17:41 INFO thread.QueuedThreadPool:  at java.net.ServerSocket.accept(ServerSocket.java:498)
14/11/05 20:17:41 INFO thread.QueuedThreadPool:  at org.eclipse.jetty.server.bio.SocketConnector.accept(SocketConnector.java:117)
14/11/05 20:17:41 INFO thread.QueuedThreadPool:  at org.eclipse.jetty.server.AbstractConnector$Acceptor.run(AbstractConnector.java:938)
14/11/05 20:17:41 INFO thread.QueuedThreadPool:  at org.eclipse.jetty.util.thread.QueuedThreadPool.runJob(QueuedThreadPool.java:608)
14/11/05 20:17:41 INFO thread.QueuedThreadPool:  at org.eclipse.jetty.util.thread.QueuedThreadPool$3.run(QueuedThreadPool.java:543)
14/11/05 20:17:41 INFO thread.QueuedThreadPool:  at java.lang.Thread.run(Thread.java:745)
14/11/05 20:17:41 INFO network.ConnectionManager: Key not valid ? sun.nio.ch.SelectionKeyImpl@2cc51248
14/11/05 20:17:41 INFO spark.MapOutputTrackerMasterActor: MapOutputTrackerActor stopped!
14/11/05 20:17:41 INFO network.ConnectionManager: Removing SendingConnection to ConnectionManagerId(quickstart.cloudera,48234)
14/11/05 20:17:41 INFO network.ConnectionManager: Removing SendingConnection to ConnectionManagerId(quickstart.cloudera,52620)
14/11/05 20:17:42 INFO network.ConnectionManager: key already cancelled ? sun.nio.ch.SelectionKeyImpl@2cc51248
java.nio.channels.CancelledKeyException
at org.apache.spark.network.ConnectionManager.run(ConnectionManager.scala:386)
at org.apache.spark.network.ConnectionManager$$anon$4.run(ConnectionManager.scala:139)
14/11/05 20:17:42 INFO network.ConnectionManager: Key not valid ? sun.nio.ch.SelectionKeyImpl@69aaccdf
14/11/05 20:17:42 INFO network.ConnectionManager: key already cancelled ? sun.nio.ch.SelectionKeyImpl@69aaccdf
java.nio.channels.CancelledKeyException
at org.apache.spark.network.ConnectionManager.run(ConnectionManager.scala:386)
at org.apache.spark.network.ConnectionManager$$anon$4.run(ConnectionManager.scala:139)




日志查看
方式一:yarnlogs -applicationId application_1415100770125_0002
方式二:通過Rm:8088端口進入Spark history Server:18088端口查看

  • 配置spark-defaults.conf 中jobhistory中的配置
spark.eventLog.enabled=true
spark.eventLog.dir=hdfs:///user/spark/applicationHistory
spark.yarn.historyServer.address=http://quickstart.cloudera:18088
  • 啟動 spark-history-server 服務
  • 此時,在yarn 集群中提交的服務日志會上傳的hdfs上,在RM:8088頁面中可以直接調(diào)整到spark頁面進行查看



提交參數(shù):
  • spark-submit --class com.wankun.sparktest.WordCount --master yarn-cluster --driver-memory 385m --executor-memory 410m  target/sparktest-1.0.0.jar /tmp/test1 2


實際上,driverExecutor和task Executor 占用那個的內(nèi)存顯示并沒有這么多,不清楚什么原因

  • 支持參數(shù)
14/11/05 11:56:14ERROR yarn.Client: Error: Executor memory sizemust be greater than: 384
Exception in thread"main" java.lang.IllegalArgumentException: Usage:org.apache.spark.deploy.yarn.Client [options]
Options:
  --jar JAR_PATH             Path to your application's JARfile (required in yarn-cluster mode)
  --class CLASS_NAME         Name of your application's main class(required)
  --arg ARGS                 Argument to be passed to yourapplication's main class.
                             Multipleinvocations are possible, each will be passed in order.
  --num-executors NUM        Number of executors to start (Default:2)
  --executor-cores NUM       Number of cores for the executors(Default: 1).
  --driver-memory MEM        Memory for driver (e.g. 1000M, 2G)(Default: 512 Mb)
  --executor-memory MEM      Memory per executor (e.g. 1000M, 2G)(Default: 1G)
  --name NAME                The name of your application(Default: Spark)
  --queue QUEUE              The hadoop queue to use forallocation requests (Default: 'default')
  --addJars jars             Comma separated list of local jarsthat want SparkContext.addJar to work with.
  --files files              Comma separated list of files tobe distributed with the job.
  --archives archives        Comma separated list of archives to bedistributed with the job.


優(yōu)化配置
將spark的hadoop類庫上傳到hdfs上,省的每次都上傳

hdfs dfs -mkdir -p /user/spark/share/lib
hadoop dfs -put /usr/lib/spark/assembly/lib/spark-assembly-1.1.0-cdh5.2.0-hadoop2.5.0-cdh5.2.0.jar /user/spark/share/lib/spark-assembly.jar
hadoop dfs -chmod -R 777 /user/spark/

在spark-env.sh中配置
export SPARK_JAR=hdfs://quickstart.cloudera:8020/user/spark/share/lib/spark-assembly.jar



五、spark cluster mode 運行模式
spark服務
啟動服務:spark-history-server  spark-master          spark-worker
spark-master 監(jiān)控頁面:
http://192.168.128.131:4040/ application detail 頁面,如果有多個sparkContext,端口依次遞增(如4041,4042…),程序結束后,關閉。頁面主要內(nèi)容
  • stages and tasks,
  • RDD sizes and memory usage
  • Environmental
  • executors

192.168.128.131 7077 master通信端口
spark-worker 監(jiān)控頁面:
http://192.168.128.131:18081 監(jiān)控頁面
192.168.128.131 7078 worker通信端口
spark-history-server 監(jiān)控頁面:

spark master和worker之間的通信使用的是akka,tcp協(xié)議。例如:[akka.tcp://sparkWorker@192.168.128.131:7078]

備注:測試時,因為master綁定在了192.168.128.131 ip上了,所以必須在/etc/spark/con/spark-env.sh配置文件配置上exportSPARK_MASTER_IP=192.168.128.131 參數(shù)

spark-env.sh主要配置
export STANDALONE_SPARK_MASTER_HOST="192.168.128.131"

export SPARK_MASTER_IP=$STANDALONE_SPARK_MASTER_HOST

### Let's run everything with JVM runtime, instead of Scala
export SPARK_LAUNCH_WITH_SCALA=0
export SPARK_LIBRARY_PATH=${SPARK_HOME}/lib
export SCALA_LIBRARY_PATH=${SPARK_HOME}/lib
export SPARK_MASTER_WEBUI_PORT=18080
export SPARK_MASTER_IP="192.168.128.131"
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_CORES=1
export SPARK_WORKER_MEMORY=100m
export SPARK_WORKER_PORT=7078
export SPARK_WORKER_INSTANCES=1
export SPARK_WORKER_WEBUI_PORT=18081
export SPARK_WORKER_DIR=/var/run/spark/work
export SPARK_LOG_DIR=/var/log/spark
export SPARK_PID_DIR='/var/run/spark/'

if [ -n "$HADOOP_HOME" ]; then
  export SPARK_LIBRARY_PATH=$SPARK_LIBRARY_PATH:${HADOOP_HOME}/lib/native
fi

export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-/etc/hadoop/conf}


注意在cloudera提供的虛擬機中的配置文件有如下問題:
第一、master的7077端口并未綁定在0.0.0.0上,第二,HADOOP_CONF_DIR寫錯了,寫成了etc/hadoop/conf。
第二、在/etc/hosts中將hostname配置上外網(wǎng)口ip,否則會造成master和worker通信失敗,或者job無法正常提交的問題,提交job時也要使用hostname提交

六、spark-submit
spark-submit
--classcom.wankun.sparktest.JavaWordCount
--masterspark://quickstart.cloudera:7077
target/sparktest-1.0.0.jar/tmp/test1 2
其余常用參數(shù):
  --executor-memory 20G
  --total-executor-cores 100

--master yarn-cluster \  # can also be `yarn-client` for clientmode
--master local[8] \# Run application locally on 8 cores
--master yarn-cluster \  # can also be `yarn-client` for clientmode

Master URLs
The master URL passed to Spark can be in one of thefollowing formats:
Master URL
Meaning
local
Run Spark locally with one worker thread (i.e. no parallelism at all).
local[K]
Run Spark locally with K worker threads (ideally, set this to the number of cores on your machine).
local
  • Run Spark locally with as many worker threads as logical cores on your machine.
    spark://HOST:PORT
    Connect to the given Spark standalone cluster master. The port must be whichever one your master is configured to use, which is 7077 by default.
    mesos://HOST:PORT
    Connect to the given Mesos cluster. The port must be whichever one your is configured to use, which is 5050 by default. Or, for a Mesos cluster using ZooKeeper, use mesos://zk://....
    yarn-client
    Connect to a YARN cluster in client mode. The cluster location will be found based on the HADOOP_CONF_DIR variable.
    yarn-cluster
    Connect to a YARN cluster in cluster mode. The cluster location will be found based on HADOOP_CONF_DIR.




    Transformations
    The following table listssome of the common transformations supported by Spark. Refer to the RDD API doc(Scala, Java, Python) and pair RDD functions doc (Scala, Java) for details.
    Transformation
    Meaning
    map(func)
    Return a new distributed dataset formed by passing each element of the source through a function func.
    a1 --> b1
    a2 --> b2
    a3 --> b3

    filter(func)
    Return a new dataset formed by selecting those elements of the source on which func returns true.
    flatMap(func)
    Similar to map, but each input item can be mapped to 0 or more output items (so func should return a Seq rather than a single item).

    mapPartitions(func)
    Similar to map, but runs separately on each partition (block) of the RDD, so func must be of type Iterator<T> => Iterator<U> when running on an RDD of type T.
    mapPartitionsWithIndex(func)
    Similar to mapPartitions, but also provides func with an integer value representing the index of the partition, so func must be of type (Int, Iterator<T>) => Iterator<U> when running on an RDD of type T.
    sample(withReplacement,fraction, seed)
    Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed.
    union(otherDataset)
    Return a new dataset that contains the union of the elements in the source dataset and the argument.
    intersection(otherDataset)
    Return a new RDD that contains the intersection of elements in the source dataset and the argument.
    distinct([numTasks]))
    Return a new dataset that contains the distinct elements of the source dataset.
    groupByKey([numTasks])
    When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) pairs.
    Note: If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using reduceByKey or combineByKey will yield much better performance.
    Note: By default, the level of parallelism in the output depends on the number of partitions of the parent RDD. You can pass an optional numTasks argument to set a different number of tasks.
    reduceByKey(func, [numTasks])
    When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function func, which must be of type (V,V) => V. Like ingroupByKey, the number of reduce tasks is configurable through an optional second argument.
    aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])
    When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine functions and a neutral "zero" value. Allows an aggregated value type that is different than the input value type, while avoiding unnecessary allocations. Like in groupByKey, the number of reduce tasks is configurable through an optional second argument.
    sortByKey([ascending], [numTasks])
    When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean ascending argument.
    join(otherDataset, [numTasks])
    When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. Outer joins are also supported through leftOuterJoin and rightOuterJoin.
    cogroup(otherDataset, [numTasks])
    When called on datasets of type (K, V) and (K, W), returns a dataset of (K, Iterable<V>, Iterable<W>) tuples. This operation is also called groupWith.
    cartesian(otherDataset)
    When called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of elements).
    pipe(command, [envVars])
    Pipe each partition of the RDD through a shell command, e.g. a Perl or bash script. RDD elements are written to the process's stdin and lines output to its stdout are returned as an RDD of strings.
    coalesce(numPartitions)
    Decrease the number of partitions in the RDD to numPartitions. Useful for running operations more efficiently after filtering down a large dataset.
    repartition(numPartitions)
    Reshuffle the data in the RDD randomly to create either more or fewer partitions and balance it across them. This always shuffles all data over the network.
    mapToPair

    JavaPairRDD ---> JavaPairRDD

    JavaPairRDD<Integer, Integer> tc;
    JavaPairRDD<Integer, Integer> edges = tc.mapToPair(
          new PairFunction<Tuple2<Integer, Integer>, Integer, Integer>() {
            @Override
            public Tuple2<Integer, Integer> call(Tuple2<Integer, Integer> e) {
              return new Tuple2<Integer, Integer>(e._2(), e._1());
            }
        });

    Actions
    The following table listssome of the common actions supported by Spark. Refer to the RDD API doc (Scala, Java, Python) and pair RDD functions doc (Scala, Java) for details.
    Action
    Meaning
    reduce(func)
    Aggregate the elements of the dataset using a function func (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel.

    a1,a2 --> b1
    a2,a3 --> b2
    a3,a4 --> b3


    collect()
    Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter or other operation that returns a sufficiently small subset of the data.
    count()
    Return the number of elements in the dataset.
    first()
    Return the first element of the dataset (similar to take(1)).
    take(n)
    Return an array with the first n elements of the dataset. Note that this is currently not executed in parallel. Instead, the driver program computes all the elements.
    takeSample(withReplacement,num, [seed])
    Return an array with a random sample of num elements of the dataset, with or without replacement, optionally pre-specifying a random number generator seed.
    takeOrdered(n, [ordering])
    Return the first n elements of the RDD using either their natural order or a custom comparator.
    saveAsTextFile(path)
    Write the elements of the dataset as a text file (or set of text files) in a given directory in the local filesystem, HDFS or any other Hadoop-supported file system. Spark will call toString on each element to convert it to a line of text in the file.
    saveAsSequenceFile(path)
    (Java and Scala)
    Write the elements of the dataset as a Hadoop SequenceFile in a given path in the local filesystem, HDFS or any other Hadoop-supported file system. This is available on RDDs of key-value pairs that either implement Hadoop's Writable interface. In Scala, it is also available on types that are implicitly convertible to Writable (Spark includes conversions for basic types like Int, Double, String, etc).
    saveAsObjectFile(path)
    (Java and Scala)
    Write the elements of the dataset in a simple format using Java serialization, which can then be loaded usingSparkContext.objectFile().
    countByKey()
    Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs with the count of each key.
    foreach(func)
    Run a function func on each element of the dataset. This is usually done for side effects such as updating an accumulator variable (see below) or interacting with external storage systems.




    action 結果是一個數(shù)據(jù),例如,正數(shù),數(shù)組,對象等
    transformation結果是一個RDD,完成從一個RDD到另一個RDD的轉換

    常用工具類說明:
    JavaRDD<D>
    JavaPairRDD<K,V>

    Tuple2(K,V>  類似與map中的一個entry e._1()  e._2()





    作者:wankunde


    相關資料




    本站僅提供存儲服務,所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權內(nèi)容,請點擊舉報。
    打開APP,閱讀全文并永久保存 查看更多類似文章
    猜你喜歡
    類似文章
    Spark提交參數(shù)說明和常見優(yōu)化
    大數(shù)據(jù)盤點之Spark篇
    大數(shù)據(jù)基礎:Spark工作原理及基礎概念
    30分鐘理解Spark的基本原理
    大數(shù)據(jù)開發(fā)之Spark 基礎入門學習
    大數(shù)據(jù)開發(fā)-Spark-一文理解Spark中的Stage,Executor,Driver...
    更多類似文章 >>
    生活服務
    熱點新聞
    分享 收藏 導長圖 關注 下載文章
    綁定賬號成功
    后續(xù)可登錄賬號暢享VIP特權!
    如果VIP功能使用有故障,
    可點擊這里聯(lián)系客服!

    聯(lián)系客服