1. 大約3600年前,古埃及人寫在紙草上的數(shù)學(xué)問題中,就涉及了方程中含有未知數(shù)的等式。
2. 公元825年左右,中亞細亞的數(shù)學(xué)家阿爾-花拉子米曾寫過一本名叫《對消與還原》的書,重點討論方程的解法。
3.“元”的概念:
方程:含有未知數(shù)的等式。即:⒈方程中一定有含一個或一個以上未知數(shù)的代數(shù)式;2.方程式是等式,但等式不一定是方程。
未知數(shù):通常設(shè)x.y.z為未知數(shù),也可以設(shè)別的字母,全部小寫字母都可以。
“次”:方程中次的概念和整式的“次”的概念相似。指的是含有未知數(shù)的項中,未知數(shù)次數(shù)最高的項。而次數(shù)最高的項,就是方程的次數(shù)。
“解”:方程的解,是指所有未知數(shù)的總稱,方程的根是指一元方程的解,兩者通常可以通用。
解方程:求出方程的解的過程,也可以說是求方程中未知數(shù)的值的過程,叫解方程。
方程式或簡稱方程,是含有未知數(shù)的等式。方程中,恒等式叫做恒等方程,矛盾式叫做矛盾方程。在未知數(shù)等于某特定值時,恰能使等號兩邊的值相等者稱為條件方程,例如 ,在等號成立時,使方程左右兩邊相等的未知數(shù)的值叫做方程的解。求出方程的解或說明方程無解的這一過程叫做解方程。
含有未知數(shù)的等式叫方程,這是中學(xué)中的邏輯定義,方程的定義還有函數(shù)定義法,關(guān)系定義,而含未知數(shù)的等式不一定是方程,如0x=0,|x|=1就不是方程,應(yīng)該這樣定義:
形如的等式,其中和是在定義域的交集內(nèi)研究的兩個解析式,且至少有一個不是常數(shù)。
性質(zhì)1
等式兩邊同時加(或減)同一個數(shù)或同一個代數(shù)式,所得的結(jié)果仍是等式。用字母表示為:若a=b,c為一個數(shù)或一個代數(shù)式。則:(1) a+c=b+c (2) a-c=b-c
性質(zhì)2
等式的兩邊同時乘或除以同一個不為0的數(shù)所得的結(jié)果仍是等式。
(3)若a=b,則b=a(等式的對稱性)。
(4)若a=b,b=c則a=c(等式的傳遞性)。
用字母表示為:若a=b,c為一個數(shù)或一個代數(shù)式(不為0)。則:
a×c=b×c a÷c=b÷c
【方程的一些概念】
方程的解:使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
解方程:求方程的解的過程叫做解方程。
解方程的依據(jù):1.移項; 2.等式的基本性質(zhì); 3.合并同類項; 4.加減乘除各部分間的關(guān)系。
解方程的步驟:1.能計算的先計算; 2.轉(zhuǎn)化——計算——結(jié)果
例如:
3x=5×6
解 : 3x=30
x=30÷3
x=10
移項:把方程中的某些項改變符號后,從方程的一邊移到另一邊,這種變形叫做移項,根據(jù)是等式的基本性質(zhì)1。
方程有整式方程和分式方程。
整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式的方程叫做整式方程。[1]分母中含有未知數(shù)的方程叫做分式方程。
教學(xué)目標
使學(xué)生初步掌握一元一次方程解簡單應(yīng)用題的方法和步驟;并會列出一元一次方程解簡單的應(yīng)用題
培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決問題的能力
使學(xué)生初步養(yǎng)成正確思考問題的良好習慣.
重點難點
一元一次方程解簡單的應(yīng)用題的方法和步驟.
教學(xué)過程
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題
在小學(xué)算術(shù)中,我們學(xué)習了用算術(shù)方法解決實際問題的有關(guān)知識,那么,一個實際問題能否應(yīng)用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個問題,我們來看下面這個例題.
例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)
解法1:(4+2)÷(3-1)=3.
答:某數(shù)為3.
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)
解法2:設(shè)某數(shù)為x,則有3x-2=x+4.
3x-2=x+4
解:(3-1)x=2+4
2x=2+4
2x=6
x=6÷2
x=3
解之,得x=3.
答:某數(shù)為3.
縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習運用一元一次方程解應(yīng)用題的目的之一.
我們知道方程是一個含有未知數(shù)的等式,而等式表示了一個相等關(guān)系.因此對于任何一個應(yīng)用題中提供的條件,應(yīng)首先從中找出一個相等關(guān)系,然后再將這個相等關(guān)系表示成方程.
本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關(guān)系和把這個相等關(guān)系轉(zhuǎn)化為方程的方法和步驟.
二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟
例2 某面粉倉庫存放的面粉運出 15%后,還剩余42500千克,這個倉庫原來有多少面粉?
師生共同分析:
本題中給出的已知量和未知量各是什么?
已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運出重量=剩余重量)
若設(shè)原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關(guān)系,如何布列方程?
上述分析過程可列表如下:
解:設(shè)原來有x千克面粉,那么運出了15%x千克,由題意,得x-15%x=42500,
x-15%x=42500
解:(1-15%)x=42500
85%x=42500
x=42500÷85%
x=50000
所以 x=50000.
答:原來有 50000千克面粉.
此時,讓學(xué)生討論:本題的相等關(guān)系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應(yīng)指出:(1)這兩種相等關(guān)系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質(zhì)是一樣的,可以任意選擇其中的一個相等關(guān)系來列方程
(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.
依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
(1)仔細審題,透徹理解題意.即弄清已知量、未知量及其相互關(guān)系,并用字母(如x)表示題中的一個合理未知數(shù)
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系.(這是關(guān)鍵一步)
(3)根據(jù)相等關(guān)系,正確列出方程.即所列的方程應(yīng)滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應(yīng)充分利用,不能漏也不能將一個條件重復(fù)利用等
(4)求出所列方程的解
(5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應(yīng)是,檢驗所求出的解既能使方程成立,又能使應(yīng)用題有意義.
定義
含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程,這樣的方程叫做一元二次方程(quadratic equation in one unknown)。
由一次方程到二次方程是個質(zhì)的轉(zhuǎn)變,通常情況下,二次方程無論是在概念上還是解法上都比一次方程要復(fù)雜得多。
一般形式:(a≠0)
一般解法有四種:
⒈公式法(直接開平方法)
⒉配方法
3.因式分解法
4.十字相乘法
十字相乘法能把某些二次三項式分解因式。這種方法的關(guān)鍵是把二次項系數(shù)a分解成兩個因數(shù)a1,a2的積a1·a2,把常數(shù)項c分解成兩個因數(shù)c1,c2的積c1·c2,并使a1c2+a2c1正好是一次項b,那么可以直接寫成結(jié)果:在運用這種方法分解因式時,要注意觀察,嘗試,并體會它實質(zhì)是二項式乘法的逆過程。當首項系數(shù)不是1時,往往需要多次試驗,務(wù)必注意各項系數(shù)的符號。
例題
例1 把分解因式。
分析:先分解二次項系數(shù),分別寫在十字交叉線的左上角和左下角,再分解常數(shù)項,分
別寫在十字交叉線的右上角和右下角,然后交叉相乘,求代數(shù)和,使其等于一次項系數(shù).
分解二次項系數(shù)(只取正因數(shù)):
2=1×2=2×1;
分解常數(shù)項:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用畫十字交叉線方法表示下列四種情況:
1 1
╳
2 3
1×3+2×1
=5
1 3
╳
2 1
1×1+2×3
=7
1 -1
╳
2 -3
1×(-3)+2×(-1)
=-5
1 -3
╳
2 -1
1×(-1)+2×(-3)
=-7
經(jīng)過觀察,第四種情況是正確的,這是因為交叉相乘后,兩項代數(shù)和恰等于一次項系數(shù)-7.
解.
一般地,對于二次三項式ax2+bx+c(a≠0),如果二次項系數(shù)a可以分解成兩個因數(shù)之積,即a=a1a2,常數(shù)項c可以分解成兩個因數(shù)之積,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
╳
a2 c2
a1c2+a2c1
按斜線交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三項式ax2+bx+c的一次項系數(shù)b,即a1c2+a2c1=b,那么二次三項式就可以分解為兩個因式a1x+c1與a2x+c2之積,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像這種借助畫十字交叉線分解系數(shù),從而幫助我們把二次三項式分解因式的方法,通常叫做十字相乘法。
例2 把分解因式.
分析:按照例1的方法,分解二次項系數(shù)6及常數(shù)項-5,把它們分別排列,可有8種不同的排列方法,其中的一種
2 1
╳
3 -5
2×(-5)+3×1=-7
是正確的,因此原多項式可以用十字相乘法分解因式。
解
指出:通過例1和例2可以看到,運用十字相乘法把一個二次項系數(shù)不是1的二次三項式因式分解,往往要經(jīng)過多次觀察,才能確定是否可以用十字相乘法分解因式.
對于二次項系數(shù)是1的二次三項式,也可以用十字相乘法分解因式,這時只需考慮如何把常數(shù)項分解因數(shù)。例如把分解因式,十字相乘法是
1 -3
╳
1 5
1×5+1×(-3)=2
所以.
例3 把分解因式。
分析:這個多項式可以看作是關(guān)于x的二次三項式,把-8y^2看作常數(shù)項,在分解二次項及常數(shù)項系數(shù)時,只需分解5與-8,用十字交叉線分解后,經(jīng)過觀察,選取合適的一組,如下
1 2
╳
5 -4
1×(-4)+5×2=6
解.
指出:原式分解為兩個關(guān)于x,y的一次式。
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:這個多項式是兩個因式之積與另一個因數(shù)之差的形式,只有先進行多項式的乘法運算,把變形后的多項式再因式分解。
問:兩上乘積的因式是什么特點,用什么方法進行多項式的乘法運算最簡便?
答:第二個因式中的前兩項如果提出公因式2,就變?yōu)?(x-y),它是第一個因式的二倍,然后把(x-y)看作一個整體進行乘法運算,可把原多項式變形為關(guān)于(x-y)的二次三項式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y)2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2
╳
2 1
1×1+2×(-2)=-3
指出:把(x-y)看作一個整體進行因式分解,這又是運用了數(shù)學(xué)中的“整體”思想方法。
例5 x2+2x-15
分析:常數(shù)項(-15)<0,可分解成異號兩數(shù)的積,可分解為(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和為2。
=(x-3)(x+5)
總結(jié):①型的式子的因式分解
這類二次三項式的特點是:二次項的系數(shù)是1;常數(shù)項是兩個數(shù)的積;一次項系數(shù)是常數(shù)項的兩個因數(shù)的和.因此,可以直接將某些二次項的系數(shù)是1的二次三項式因式分解:
②kx2+mx+n型的式子的因式分解
如果能夠分解成k=ac,n=bd,且有ad+bc=m 時,那么
kx2+mx+n=(ax+b)(cx+d)
a b
╳
c d
1.直接開平方法:
直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如的
方程,其解為.
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以
此方程也可用直接開平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丟解)
∴x=
∴原方程的解為x1=,x2=
(2)解: 9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解為x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先將常數(shù)c移到方程右邊:ax2+bx=-c
將二次項系數(shù)化為1:x2+x=-
方程兩邊分別加上一次項系數(shù)的一半的平方:x2+x+( )2=- +( )2
方程左邊成為一個完全平方式:(x+ )2=
當b2-4ac≥0時,x+ =±
∴x=(這就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:將常數(shù)項移到方程右邊 3x2-4x=2
將二次項系數(shù)化為1:x2-x=
方程兩邊都加上一次項系數(shù)一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接開平方得:x-=±
∴x=
∴原方程的解為x1=,x2= .
3.公式法:把一元二次方程化成一般形式,然后計算判別式△=b2-4ac的值,當b2-4ac<0時,無解;方程當b2-4ac≥0時,把各項系數(shù)a, b, c的值代入求根公式就可得到方程的根。
例3.用公式法解方程2x2-8x=-5
解:將方程化為一般形式:2x2-8x+5=0
∴a=2, b=-8, c=5
b2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= = =
∴原方程的解為x1=,x2= .
4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓
兩個一次因式分別等于零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個
根。這種解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (選學(xué)) (4)x2-2( + )x+4=0 (選學(xué))
(1)解:(x+3)(x-6)=-8 化簡整理得
x2-3x-10=0 (方程左邊為二次三項式,右邊為零)
(x-5)(x+2)=0 (方程左邊分解因式)
∴x-5=0或x+2=0 (轉(zhuǎn)化成兩個一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0 (用提公因式法將方程左邊分解因式)
∴x=0或2x+3=0 (轉(zhuǎn)化成兩個一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同學(xué)做這種題目時容易丟掉x=0這個解,應(yīng)記住一元二次方程有兩個解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x2-2(+ )x+4 =0 (∵4 可分解為2 ·2 ,∴此題可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。
5.十字相乘法
可對形如y=x2+(p+q)x+pq型的式子的因式分解
這類二次三項式的特點是:二次項的系數(shù)是1;常數(shù)項是兩個數(shù)的積;一次項系數(shù)是常數(shù)項的兩個因數(shù)的和。因此,可以直接將某些二次項的系數(shù)是1的二次三項式因式分解: x2+(p+q)x+pq=(x+p)(x+q)
二元二次方程:含有兩個未知數(shù)且未知數(shù)的最高次數(shù)為2的整式方程。
聯(lián)系客服