期末考試結(jié)束了,初三學(xué)生迎來(lái)了初中學(xué)習(xí)生活中的最后一個(gè)寒假,這對(duì)初三學(xué)生來(lái)說(shuō)是非常重要的寒假。在上課的時(shí)間因?yàn)槊刻煺n程很多,作業(yè)也不少,再加上教師的教學(xué)理念沒(méi)有徹底轉(zhuǎn)變,家長(zhǎng)又層層加碼,因此學(xué)生學(xué)習(xí)主動(dòng)權(quán)較少,現(xiàn)在放寒假了學(xué)生有了近一個(gè)月的自主安排時(shí)間,這是鍛煉學(xué)生“會(huì)學(xué)”能力的好機(jī)會(huì)。也是初三學(xué)生掌握學(xué)習(xí)方法的好機(jī)會(huì)。如何有效地學(xué)習(xí)好初三數(shù)學(xué)我們要掌握如下的學(xué)習(xí)秘訣。
秘訣一 夯實(shí)數(shù)學(xué)知識(shí)與技能
近幾年來(lái)中考命題事實(shí)明確告訴我們:基礎(chǔ)知識(shí)、基本技能、基本方法始終是中考數(shù)學(xué)試題考查的重點(diǎn),選擇題、填空題以及解答題中的基本常規(guī)題已達(dá)整份試卷的80%左右。因此,對(duì)各位考生來(lái)講,80%“送分送到位”的基礎(chǔ)題是拿到好成績(jī)的重要保障。這就要求我們學(xué)生在學(xué)習(xí)的過(guò)程中注重基礎(chǔ)知識(shí)的理解、基本技能的訓(xùn)練、基本方法的掌握。
近幾年在初三數(shù)學(xué)各類考題中安排了較大比例(約80%)的試題來(lái)考查“雙基”,而有些題只考了一個(gè)知識(shí)點(diǎn)。全卷的基礎(chǔ)知識(shí)的覆蓋面較廣,起點(diǎn)低,許多試題源于課本,在課本中能找到原型,有的是對(duì)課本原型進(jìn)行加工、組合、延伸和拓展。因此,訓(xùn)練“雙基”時(shí),要做到準(zhǔn)、精、快。準(zhǔn):就是要充分準(zhǔn)備,有能力做出來(lái)的題目做到絕對(duì)準(zhǔn)確。精:就是要有選擇地做題,突出重點(diǎn)???就是要算好做題時(shí)間,絕不因小題目而丟失了做綜合題的時(shí)間。
同時(shí),初三各考生也需注意的是:初三考試不再只考查學(xué)生積累了多少“雙基”,而是要求學(xué)生運(yùn)用“雙基”解決具體問(wèn)題。所以,雖然試題難度保持原有水平,框架形式相對(duì)穩(wěn)定不變,但試題仍趨向于通過(guò)創(chuàng)設(shè)新的問(wèn)題情境,以熱點(diǎn)問(wèn)題作為考題的背景。要求學(xué)生能結(jié)合實(shí)際問(wèn)題在運(yùn)用的過(guò)程中考查“雙基”。試題重視了邏輯推理能力的考查,注意了適度論證,加強(qiáng)了計(jì)算和推理的有機(jī)結(jié)合,但容易入手,方法多樣,不求繁、求難,也沒(méi)有“出偏出怪”。
秘訣二 掌握數(shù)學(xué)思想與方法
數(shù)學(xué)思想方法在數(shù)學(xué)學(xué)習(xí)中具有舉足輕重的地位和作用,具體表現(xiàn)在:一是提供簡(jiǎn)潔精確的形式化語(yǔ)言;二是提供數(shù)量分析及計(jì)算的方法;三是提供邏輯推理的工具。因而它具有應(yīng)用的普遍性和可操作性。正因?yàn)槿绱?數(shù)學(xué)學(xué)習(xí)的目的不僅僅在于為后繼學(xué)習(xí)準(zhǔn)備必要的數(shù)學(xué)知識(shí)問(wèn)題,更重要的是培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí),發(fā)展學(xué)生的數(shù)學(xué)思想。縱觀近幾年初三數(shù)學(xué)各類考試試題,我們可以看到:對(duì)數(shù)學(xué)思想方法的思考、提煉與
總結(jié),在數(shù)學(xué)解題中自覺(jué)應(yīng)用乃至成為一種思維習(xí)慣,已成為提高數(shù)學(xué)修養(yǎng)的基本形式。掌握數(shù)學(xué)思想方法可以使數(shù)學(xué)更容易理解和記憶,更重要的是領(lǐng)會(huì)數(shù)學(xué)思想方法是通向遷移大道的“光明之路”。如果把數(shù)學(xué)思想方法學(xué)好了,在數(shù)學(xué)思想方法的指導(dǎo)下運(yùn)用數(shù)學(xué)方法駕馭數(shù)學(xué)知識(shí),就能提高數(shù)學(xué)能力,數(shù)學(xué)學(xué)習(xí)就較容易了。
數(shù)學(xué)思想、數(shù)學(xué)方法是數(shù)學(xué)智能發(fā)展的重要成分。但目前這一問(wèn)題還沒(méi)有引起考生的足夠的重視。其原因有:(1)目前的數(shù)學(xué)教材僅是知識(shí)的呈現(xiàn),對(duì)蘊(yùn)含在知識(shí)中的數(shù)學(xué)思想、數(shù)學(xué)方法沒(méi)有予以概括與提煉;(2)在復(fù)習(xí)中常常不能恰如其分地運(yùn)用數(shù)學(xué)思想、方法解題,致使一些學(xué)生教師講過(guò)的習(xí)題會(huì)做,沒(méi)講過(guò)的習(xí)題不會(huì)做;套題會(huì)做,質(zhì)同形不同的題不會(huì)做;模仿的題目會(huì)做,獨(dú)立思考的題目不會(huì)做。數(shù)學(xué)思想是對(duì)數(shù)學(xué)規(guī)律的理性認(rèn)識(shí),具有本質(zhì)性、概括性和指導(dǎo)性的意義,可謂數(shù)學(xué)“靈魂”。數(shù)學(xué)方法是獲取數(shù)學(xué)知識(shí)的途徑、手段和方式的總和,沒(méi)有數(shù)學(xué)方法就不可能有獲取數(shù)學(xué)知識(shí)的正確行為。
考試中常用的數(shù)學(xué)思想和方法有:整體思想、轉(zhuǎn)化思想、分類討論思想、函數(shù)思想、對(duì)應(yīng)思想、方程思想、數(shù)形結(jié)合思想、類比思想,換元法、待定系數(shù)法、消元法、降次法、配方法、面積法、分析法、綜合法等??忌_M(jìn)行數(shù)學(xué)基本思想、數(shù)學(xué)基本方法的總結(jié)和提煉,在解題后進(jìn)行分析和歸納,反思和提煉,從中探尋規(guī)律,收到舉一反三的效果。
化歸思想:就是把未知問(wèn)題化歸為已知問(wèn)題,把復(fù)雜問(wèn)題化歸為簡(jiǎn)單問(wèn)題,把非常規(guī)問(wèn)題化歸為常規(guī)問(wèn)題,從而使很多問(wèn)題得到解決的思想。結(jié)合解題進(jìn)行化歸思想方法的訓(xùn)練的做法有:(1)化繁為簡(jiǎn);(2)化高維為低維;(3)化抽像為具體;(4)化非規(guī)范性問(wèn)題為規(guī)范性問(wèn)題;(5)化數(shù)為形;(6)化形為數(shù);(7)化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題;(8)化綜合為單一;(9)化一般為特殊等。
數(shù)形結(jié)合的思想:能運(yùn)用代數(shù)、三角比知識(shí)通過(guò)數(shù)量關(guān)系的討論去處理幾何圖形的問(wèn)題;能運(yùn)用幾何、三角比知識(shí)通過(guò)對(duì)圖形性質(zhì)的研究去解決數(shù)量關(guān)系的問(wèn)題。能將抽象的數(shù)學(xué)語(yǔ)言與直觀的圖形符號(hào)結(jié)合起來(lái),把抽象思維與形象思維結(jié)合起來(lái);會(huì)用代數(shù)的方法去研究幾何問(wèn)題,會(huì)根據(jù)圖形的性質(zhì)及幾何知識(shí)去處理代數(shù)問(wèn)題。
分類討論的思想:當(dāng)面臨的問(wèn)題不宜用一種方法處理或同一種形式敘述時(shí),就把問(wèn)題按照一定的原則或標(biāo)準(zhǔn)分為若干類,然后逐類進(jìn)行討論,再把這幾類的結(jié)論匯總,得出問(wèn)題的答案,這種解決問(wèn)題的思想方法就是分類討論的思想方法。分類討論的思想方法的實(shí)質(zhì)是把問(wèn)題“分而治之,各個(gè)擊破”,其一般規(guī)則及步驟是:(1)確定同一分類標(biāo)準(zhǔn);(2)恰當(dāng)?shù)貙?duì)全體對(duì)像進(jìn)行分類,按照標(biāo)準(zhǔn)對(duì)分類做到“既不重復(fù)又不遺漏”;(3)逐類討論,按一定的層次討論,逐級(jí)進(jìn)行;(4)綜合概括小節(jié),歸納得出結(jié)論。
方程的思想:方程思想是一種重要的數(shù)學(xué)思想。學(xué)會(huì)從分析問(wèn)題的數(shù)量關(guān)系入手,將問(wèn)題中的已知量和未知量之間的數(shù)量關(guān)系通過(guò)適當(dāng)設(shè)元,建立起方程(組),然后通過(guò)解方程(組)使問(wèn)題得到解決的思維方式。用方程思想解題的關(guān)鍵是利用已知條件或公式、定理中的已知結(jié)論構(gòu)造方程(組)。這種思想在代數(shù)、幾何及生活實(shí)際中有著廣泛的應(yīng)用。
函數(shù)的思想:函數(shù)所揭示的是兩個(gè)變量之間的對(duì)應(yīng)關(guān)系,通俗的講就是一個(gè)量的變化引起了另一個(gè)量的變化。在數(shù)學(xué)中總是設(shè)法將這種對(duì)應(yīng)關(guān)系用解析式、圖像和表格表示出來(lái),這樣就能充分運(yùn)用函數(shù)的知識(shí)、方法來(lái)解決有關(guān)的問(wèn)題。
秘訣三 培養(yǎng)創(chuàng)新思想與能力
初中數(shù)學(xué)如何培養(yǎng)學(xué)生創(chuàng)新意識(shí)和創(chuàng)造能力,是當(dāng)前初中數(shù)學(xué)教學(xué)的重要任務(wù),也是對(duì)初中學(xué)生數(shù)學(xué)素養(yǎng)的較高要求。《課程標(biāo)準(zhǔn)》特別強(qiáng)調(diào)數(shù)學(xué)背景的“現(xiàn)實(shí)性”和“數(shù)學(xué)化”。能用數(shù)學(xué)眼光認(rèn)識(shí)世界,并能用數(shù)學(xué)知識(shí)和數(shù)學(xué)方法處理解決周圍的實(shí)際問(wèn)題。這幾年的初三考試試題已經(jīng)由單純的知識(shí)疊加型轉(zhuǎn)化為知識(shí)、方法和能力綜合型,尤其加強(qiáng)了創(chuàng)新能力型試題。創(chuàng)新能力型試題是數(shù)學(xué)試題的精華部分,具有知識(shí)容量大、解題方法多、能力要求高、突顯數(shù)學(xué)思想方法的運(yùn)用以及要求考生具有一定的創(chuàng)新意識(shí)和創(chuàng)新能力等特點(diǎn)。
總之,學(xué)有學(xué)法,但無(wú)定法。不管采取何法,必須增強(qiáng)數(shù)學(xué)的分析能力、思維能力、自學(xué)能力,同時(shí)在復(fù)習(xí)中要注意規(guī)范訓(xùn)練,嚴(yán)格按照考試要求答題,按標(biāo)準(zhǔn)格式答題,糾正答題過(guò)程中的不良習(xí)慣,對(duì)于試卷的錯(cuò)誤要認(rèn)真分析。只要方法得當(dāng),就能提高復(fù)習(xí)質(zhì)量,達(dá)到事半功倍的效果。