CRC發(fā)生是“腺瘤-癌”逐步演變進(jìn)展的過程,首先發(fā)生APC和KRAS基因突變,隨后p53、PI3K和轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)等通路的組成發(fā)生突變。在轉(zhuǎn)移性CRC中,不推薦發(fā)生KRAS基因突變的患者接受抗EGFR治療。據(jù)統(tǒng)計(jì),60%的CRC患者可以檢測出p53基因突變,p53基因突變提示癌細(xì)胞對大多數(shù)化療藥物的敏感性降低,尤其是5-FU[3]。CRC主要有3種表型[4]:染色體不穩(wěn)定(chromosomal instability,CIN)、微衛(wèi)星不穩(wěn)定(microsatellite instability,MSI)和CpG島甲基化(CpG island methylator phenotype,CIMP)。超過50%的CRC患者表現(xiàn)CIN,部分腺瘤病例中可檢測到染色體異常,表明CIN可能出現(xiàn)在腺瘤向CRC進(jìn)展的早期[5]。CIN發(fā)生發(fā)展的機(jī)制尚未明確,但常見的染色體畸變包括重復(fù)、非整倍體出現(xiàn)、p53或其他檢查點(diǎn)基因突變均促使CIN形成,研究發(fā)現(xiàn)具備CIN表型患者往往比MSI患者的預(yù)后更差[6]。
DNA錯配修復(fù)蛋白(mismatch repair,MMR)活性喪失引起MSI占所有CRC的12%~15%,僅2%~3%與Lynch綜合征相關(guān),其余為散發(fā)性CRC,主要由MLH1基因啟動子高甲基化引發(fā)MSI。散發(fā)性腫瘤與鋸齒狀腺瘤形成途徑有關(guān),常伴BRAF V600E基因突變[7]。錯配修復(fù)缺失(mismatch repair deficient,dMMR)腫瘤的特點(diǎn)是高腫瘤突變負(fù)荷(tumor mutational burden,TMB),與微衛(wèi)星穩(wěn)定/DNA錯配修復(fù)正常(microsatellite stable/DNA mismatch repair proficient,MSS/pMMR)相比,TMB可增加100至1 000倍,高TMB患者的總生存期(overall survival,OS)縮短[8],dMMR對5-FU具有抗藥性,并且與5-FU輔助治療后患者的OS率降低有關(guān)。有學(xué)者發(fā)現(xiàn),F(xiàn)OLFOX或FOLFIRI方案治療dMMR CRC患者的無病生存期(disease free survival,DFS)延長。高度微衛(wèi)星不穩(wěn)定(microsatellite instability high,MSI-H)的早期CRC患者的預(yù)后更好,在轉(zhuǎn)移性CRC患者中DFS和OS明顯短于MSS[9]。
最新的研究表明,dMMR/MSI-H的CRC對免疫檢查點(diǎn)抑制劑(immune checkpoint inhibitors,ICIs)更敏感,例如抗PD-1抗體納武單抗(OPDIVO)和派姆單抗(KEYTRUDA)以及抗CTLA-4抗體伊匹單抗[10, 11]。然而超過50%的患者對ICIs沒有持久反應(yīng)。此外,絕大多數(shù) pMMR/MMS CRC是免疫原性差或“冷”腫瘤,對單一ICIs沒有反應(yīng)。細(xì)胞毒性化療藥物可以誘導(dǎo)免疫原性細(xì)胞死亡,可能有助于增強(qiáng)免疫反應(yīng)并增強(qiáng) ICIs的治療效果[12]。除ICIs外,臨床研究的應(yīng)用主要集中在腫瘤生長調(diào)節(jié)、緩解耐藥性、控制轉(zhuǎn)移擴(kuò)散、血管生成及細(xì)胞凋亡[13]。例如,貝伐單抗、西妥昔單抗和帕尼單抗已被證實(shí)可以提高轉(zhuǎn)移性CRC的治療效果和患者的生存率。
Meessen等[14]發(fā)現(xiàn),MSI-H可導(dǎo)致四核苷酸MSI。在不同的癌癥中檢測出一種稱為在選定的四核苷酸重復(fù)升高的微衛(wèi)星改變(elevated microsatellite alterations at selected tetranucleotide repeats,EMAST)的dMMR。MSH3是一種大腸桿菌MutS基因同源基因,與其相關(guān)的EMAST是CRC預(yù)后不良的生物標(biāo)志物。喪失MSH3功能的癌癥可能對PARP或DNA-PKC抑制劑的靶向治療更敏感。CIMP是CRC的重要預(yù)測因素,與啟動子甲基化沉默所致多個抑癌基因失活相關(guān)[14]。CIMP-H被定義為至少3個或5個標(biāo)記基因的高甲基化,而CIMP-L被定義為5個標(biāo)記中的1~2個高甲基化。CIMP-H與MLH1啟動子甲基化和隨之產(chǎn)生的MSI-H相關(guān)[15]。CIMP-H患者對基于5-FU的化療無效,然而CIMP-H伴MSI患者的生存率更高[14]。
過去十多年的研究表明,腫瘤的異質(zhì)性經(jīng)在轉(zhuǎn)錄組水平的研究后,提供了對于疾病過程更為全面的分子圖譜。2012至2014年,CRC分子病理分型研究領(lǐng)域報道了6種代表性的分型系統(tǒng)[16, 17, 18, 19, 20, 21],詳見表1。隨著高通量檢測技術(shù)的發(fā)展,2015年由以上6個獨(dú)立研究小組和Sage Bionetworks作為評估團(tuán)隊(duì)組成的CRC分型聯(lián)盟(CRC subtyping consortium,CRCSC)對上述6種分型進(jìn)行基于網(wǎng)絡(luò)的Meta分析,確定了4種共識分子亞型(consensus molecular subtypes,CMSs),見表2。
表1 6種結(jié)直腸癌分類系統(tǒng)
表2 結(jié)直腸癌的CMSs
1. CMS1-MSI免疫型(14%):CMS1具有免疫細(xì)胞浸潤特征,CRC中淋巴細(xì)胞主要位于腫瘤中心和侵襲邊緣,腫瘤浸潤進(jìn)展,T細(xì)胞數(shù)量隨之降低。研究表明,TNM分期和免疫細(xì)胞浸潤模式是預(yù)測DFS和OS的最顯著指標(biāo)[22, 23, 24]。CD3 T細(xì)胞、CD8 細(xì)胞毒性T細(xì)胞、記憶性CD45RO T細(xì)胞與DFS和OS延長有關(guān),但該型復(fù)發(fā)后患者的生存率低于其余亞型。
2. CMS2-經(jīng)典型(37%):CMS2主要特征是WNT信號通路的下游靶點(diǎn)(APC基因)和p53基因高頻突變。WNT信號通路在胚胎發(fā)育過程中起重要作用,該通路突變和異常激活與CRC發(fā)生關(guān)系密切。APC是十分重要的腫瘤抑制基因,APC發(fā)生突變時,細(xì)胞核中β聯(lián)蛋白濃度增高,形成TGF-β,抑制上皮分化,促使腫瘤發(fā)生[25]。p53是另一重要的腫瘤抑制基因,p53基因突變可見于43% CRC人群,其余通常由于編碼參與p53調(diào)節(jié)的蛋白質(zhì)基因改變,如ATM(13%)或DNA-PKcs(11%)。p53基因突變與CRC中對5-FU、順鉑、吉西他濱等化療藥物以及西妥昔單抗反應(yīng)降低相關(guān),可能導(dǎo)致患者的預(yù)后和OS更差[26]。近年來,隨著對p53基因在CRC中的研究不斷深入,針對p53基因的靶向藥物(3S)-6,7-bis(hydroxymethyl)-5-methyl-3-phenyl-1H,3H-pyrrolo[1,2-c]thiazole(MANIO)的試驗(yàn)發(fā)現(xiàn)MANIO可以激活野生型p53基因功能并恢復(fù)腫瘤細(xì)胞中突變型p53基因的抑癌作用,將使不同p53基因狀態(tài)的CRC患者獲益[27]。
3. CMS3-代謝型(13%):CMS3是4種CMSs中唯一存在KRAS基因高頻突變的亞型,RAS基因突變對CRC具有預(yù)后指導(dǎo)意義,KRAS基因突變對轉(zhuǎn)移性CRC抗EGFR治療無效有預(yù)測作用。針對CRC中KRAS基因突變治療的研究不斷發(fā)展,除了對靶向治療的意義,其與CDK等下游通路抑制劑、免疫治療及聯(lián)合化療治療的關(guān)系需要進(jìn)一步探索[28]。
4. CMS4-間質(zhì)型(23%):CMS4以EMT上調(diào)、間質(zhì)浸潤為特征,主要是癌相關(guān)成纖維細(xì)胞(cancer-associated fibroblasts,CAFs)浸潤腫瘤間質(zhì)[25]。CAFs是腫瘤微環(huán)境(tumor microenvironment,TME)的關(guān)鍵組成部分,負(fù)向調(diào)節(jié)抗腫瘤T細(xì)胞反應(yīng)。免疫抑制性TME是ICIs療效不佳的原因之一。Huang等[29]發(fā)現(xiàn),直接干擾CAFs衍生WNT2可恢復(fù)樹突狀細(xì)胞(dendritic cell,DC)分化和DC介導(dǎo)的抗腫瘤T細(xì)胞反應(yīng)并增強(qiáng)抗PD-1的療效。靶向WNT2可能改善ICIs療效,為新的抗癌免疫治療奠定基礎(chǔ)。
根據(jù)來自所有33種非血液癌癥基因組圖譜(The Cancer Genome Atlas,TCGA)的10,000多例患者的轉(zhuǎn)錄組學(xué)特征,開發(fā)了一種新的實(shí)體瘤全球免疫分型(immune subtypes,ISs),分為C1:創(chuàng)傷愈合(wound healing);C2:IFN-γ主導(dǎo)(IFN-γ dominant);C3:炎癥(inflammatory);C4:淋巴耗竭(lymphocyte depleted);C5:免疫靜默(immunologically quiet);C6:TGF-β主導(dǎo)(TGF-β dominant),詳見表3。Soldevilla等[30]發(fā)現(xiàn),CMSs在ISs的分布存在顯著的異質(zhì)性,具有臨床和生物學(xué)意義。CMS1被認(rèn)為最有可能從免疫治療中獲益,因?yàn)檫@種亞型包括大多數(shù)MSI/高度突變的腫瘤。屬于CMS2、CMS3和CMS4的C2腫瘤也可能受益于免疫檢查點(diǎn)靶向治療。所有C6腫瘤都屬于CMS4,盡管患者數(shù)量非常少,與CMS1一樣,CMS4也具有顯著的免疫激活特征,也可以從ICIs中獲益。ISs是一種新的有價值的評價方法,可幫助篩選免疫治療的患者。然而,個體CRC類型在ISs的比例和預(yù)后影響方面存在很大差異,ISs對于細(xì)胞毒性藥物的反應(yīng)以及免疫治療的療效評估需要深入探討。
表3 實(shí)體瘤的6種免疫亞型 [30]
腫瘤的分子分型可以評估預(yù)后,并為制定個體化精準(zhǔn)治療提供依據(jù)。盡管CMSs目前在CRC患者臨床決策中應(yīng)用有限,但仍是迄今為止較全面的分型系統(tǒng),為未來臨床分型及基于亞型的靶向治療奠定了基礎(chǔ)。該分類系統(tǒng)將在未來的臨床應(yīng)用大數(shù)據(jù)中得到驗(yàn)證,進(jìn)一步深入研究腫瘤與免疫抑制微環(huán)境之間復(fù)雜的相互作用,將現(xiàn)有的分型實(shí)現(xiàn)臨床轉(zhuǎn)化有利于制定基于腫瘤生物標(biāo)志物的患者分層策略,促進(jìn)CRC個體化精準(zhǔn)診斷與治療。
(在框內(nèi)向上滑動手指即可瀏覽全部參考文獻(xiàn))
[1]
Di NicolantonioF, VitielloPP, MarsoniS, et al. Precision oncology in metastatic colorectal cancer—from biology to medicine[J]. Nat Rev Clin Oncol, 2021, 18(8):506-525. DOI: 10.1038/s41571-021-00495-z.
[2]
FengM, ZhaoZ, YangM, et al. T-cell-based immunotherapy in colorectal cancer[J]. Cancer Lett, 2021, 498(2):201-209. DOI: 10.1016/j.canlet.2020.10.040.
[3]
PeiD, ZhangY, ZhengJ. Regulation of p53: a collaboration between MDM2 and MDMX[J]. Oncotarget, 2012, 3(3):228-235. DOI: 10.18632/oncotarget.443.
[4]
WangW, KandimallaR, HuangH, et al. Molecular subtyping of colorectal cancer: recent progress, new challenges and emerging opportunities [J]. Semin Cancer Biol, 2019, 55(1):37-52. DOI: 10.1016/j.semcancer.2018.05.002.
[5]
BuntingSF, NussenzweigA. End-joining, translocations and cancer[J]. Nat Rev Cancer, 2013, 13(7):443-454. DOI: 10.1038/nrc3537.
[6]
WatanabeT, KobunaiT, YamamotoY, et al. Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer[J]. J Clin Oncol, 2012, 30(18):2256-2264. DOI: 10.1200/JCO.2011.38.6490.
[7]
The WHO Classification of Tumors Editorial Board. WHO Classification of Tumours. Digestive System Tumors[M]. 5th Ed. Lyon: WHO press, 2019.
[8]
李瑞欣, 尚建華, 孫俊鋒. 腫瘤突變負(fù)荷在R0切除術(shù)后接受卡培他濱為基礎(chǔ)輔助化療的結(jié)直腸癌患者中的臨床意義[J]. 中華普通外科雜志, 2021, 36(8):569-574. DOI: 10.3760/cma.j.cn113855-20201216-00936.
[9]
LizardoDY, KuangC, HaoS, et al. Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: from bench to bedside[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2):188447. DOI: 10.1016/j.bbcan.2020.188447.
[10]
LinA, ZhangJ, LuoP. Crosstalk between the MSI status and tumor microenvironment in colorectal cancer[J]. Front Immunol, 2020, 11:2039. DOI: 10.3389/fimmu.2020.02039.eCollection2020.
[11]
AlmquistDR, AhnDH, Bekaii-SaabTS. The role of immune checkpoint inhibitors in colorectal adenocarcinoma[J]. Bio Drugs, 2020, 34(3):349-362.DOI: 10.1007/s40259-020-00420-3.
[12]
LiuN, ShanF, MaM. Strategic enhancement of immune checkpoint inhibition in refractory colorectal cancer: trends and future prospective[J]. Int Immunopharmacol, 2021, 99:108017. DOI: 10.1016/j.intimp.2021.108017.
[13]
GharwanH, GroningerH. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications[J]. Nat Rev Clin Oncol, 2016, 13(4):209-227. DOI: 10.1038/nrclinonc.2015.213.
[14]
MeessenS, CurreyN, JahanZ, et al. Tetranucleotide and low microsatellite instability are inversely associated with the CpG island methylator phenotype in colorectal cancer[J].Cancers(Basel), 2021, 13(14):3529.DOI: 10.3390/cancers13143529.
[15]
WeisenbergerDJ, SiegmundKD, CampanM, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer[J]. Nat Genet, 2006, 38(7):787-793. DOI: 10.1038/ng1834.
[16]
SchlickerA, BeranG, ChrestaCM, et al. Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines [J]. BMC Med Genomics, 2012, 5:66. DOI: 10.1186/1755-8794-5-66.
[17]
MarisaL, de ReynièsA, DuvalA, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value [J]. PLoS Med, 2013, 10(5): e1001453. DOI: 10.1371/journal.pmed.1001453.
[18]
SadanandamA, LyssiotisCA, HomicskoK, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy [J]. Nat Med, 2013, 19(5):619-625. DOI: 10.1038/nm.3175.
[19]
De Sousa E MeloF, WangX, JansenM, et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions [J]. Nat Med, 2013, 19(5):614-618. DOI: 10.1038/nm.3174.
[20]
BudinskaE, PopoviciV, TejparS, et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer [J]. J Pathol, 2013, 231(1):63-76. DOI: 10.1002/path.4212.
[21]
RoepmanP, SchlickerA, TaberneroJ, et al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition [J]. Int J Cancer, 2014, 134(3):552-562. DOI: 10.1002/ijc.28387.
[22]
GalonJ, LanziA. Immunoscore and its introduction in clinical practice[J]. Q J Nucl Med Mol Imaging, 2020, 64(2):152-161. DOI: 10.23736/S1824-4785.20.03249-5.
[23]
ZeestratenEC, Van HoeselAQ, SpeetjensFM, et al. FoxP3- and CD8-positive infiltrating immune cells together determine clinical outcome in colorectal cancer [J]. Cancer Microenviron, 2013, 6(1):31-39. DOI: 10.1007/s12307-011-0071-x.
[24]
CaoY, NishiharaR, QianZR, et al. Regular aspirin use associates with lower risk of colorectal cancers with low numbers of tumor-infiltrating lymphocytes[J]. Gastroenterology, 2016, 151(5):879-892.e4. DOI: 10.1053/j.gastro.2016.07.030.
[25]
GuinneyJ, DienstmannR, WangX, et al. The consensus molecular subtypes of colorectal cancer[J]. Nat Med, 2015, 21(11):1350-1356. DOI: 10.1038/nm.3967.
[26]
LieblMC, HofmannTG. The role of p53 signaling in colorectal cancer[J]. Cancers (Basel), 2021, 13(9):2125. DOI: 10.3390/cancers13092125.
[27]
RamosH, SoaresMIL, SilvaJ, et al. A selective p53 activator and anticancer agent to improve colorectal cancer therapy[J]. Cell Rep, 2021, 35(2):108982. DOI: 10.1016/j.celrep.2021.108982.
[28]
RahmanS, GarrelS, GerberM, et al. Therapeutic targets of KRAS in colorectal cancer[J]. Cancers (Basel), 2021, 13(24):6233. DOI: 10.3390/cancers13246233.
[29]
HuangTX, TanXY, HuangHS, et al. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity[J]. Gut, 2022, 71(2):333-344. DOI: 10.1136/gutjnl-2020-322924.
[30]
SoldevillaB, Carretero-PucheC, Gomez-LopezG, et al. The correlation between immune subtypes and consensus molecular subtypes in colorectal cancer identifies novel tumor microenvironment profiles, with prognostic and therapeutic implications[J]. Eur J Cancer, 2019, 123(9):118-129. DOI: 10.1016/j.ejca.2019.09.008.
聯(lián)系客服