上過初中的都記得著名的勾股定理,“勾三股四弦五”,嚴(yán)格來說勾股定理沒有總結(jié)出數(shù)學(xué)規(guī)律算不上定理,畢達(dá)哥拉斯定理才是真正意義上的定理。
勾股定理非常簡單,兩直角邊的平方和等于斜邊的平方。
勾股定理 a2+b2=c2
a2+b2=c2
可是現(xiàn)實(shí)生活中的三角形往往并不是一定有一個直角,這樣勾股定理就用不了了。
這時我們可以用余弦定理來解決問題,余弦定理的定義是:一邊的平方等于另兩邊的平方和減去2倍的另兩邊長度與一邊的余弦的乘積。
這樣我們就可以計(jì)算任意角度三角形啦。
余弦定理 a2=b2+c2-2bccosA
a2=b2+c2-2bccosA
b2=a2+c2-2accosB
c2=a2+b2-2abcosC
覺得有用的話請收藏下來吧!
聯(lián)系客服