在解三角形時,正弦定理可解決兩類問題:(1)已知兩角及任一邊,求其它邊或角;(2)已知兩邊及一邊的對角,求其它邊或角.情況(2)中結(jié)果可能有一解、二解、無解,應注意區(qū)分.
余弦定理可解決兩類問題: (1)已知兩邊及夾角或兩邊及一邊對角的問題;(2)已知三邊問題.
(1)已知兩角一邊可求第三角,解這樣的三角形只需直接用正弦定理代入求解即可.
(2)已知兩邊和一邊對角,解三角形時,利用正弦定理求另一邊的對角時要注意討論該角,這是解題的難點,應引起注意.
(1)根據(jù)所給等式的結(jié)構(gòu)特點利用余弦定理將角化邊進行變形是迅速解答本題的關(guān)鍵.
(2)熟練運用余弦定理及其推論,同時還要注意整體思想、方程思想在解題過程中的運用.
在已知關(guān)系式中,若既含有邊又含有角.通常的思路是:將角都化成邊或?qū)⑦叾蓟山?,再結(jié)合正、余弦定理即可求角.
(1)利用正弦、余弦定理判斷三角形形狀時,對所給的邊角關(guān)系式一般都要先化為純粹的邊之間的關(guān)系或純粹的角之間的關(guān)系,再判斷.
(2)本題也可分析式子的結(jié)構(gòu)特征,從式子看具有明顯的對稱性,可判斷圖形為等腰或直角三角形.
聯(lián)系客服