九色国产,午夜在线视频,新黄色网址,九九色综合,天天做夜夜做久久做狠狠,天天躁夜夜躁狠狠躁2021a,久久不卡一区二区三区
打開APP
未登錄
開通VIP,暢享免費電子書等14項超值服
開通VIP
首頁
好書
留言交流
下載APP
聯(lián)系客服
什么是支持向量機--目前的研究熱點
軟件團隊頭目
>《人工智能方法》
2006.12.12
關(guān)注
什么是支持向量機--目前的研究熱點
★ ★
angeldeer(金幣
+2
):thanks
基于統(tǒng)計學(xué)習(xí)理論的支持向量機算法研究
1 理論背景
基于數(shù)據(jù)的機器學(xué)習(xí)是現(xiàn)代智能技術(shù)中的重要方面,研究從觀測數(shù)據(jù)(樣本)出發(fā)尋找規(guī)律,利用這些規(guī)律對未來數(shù)據(jù)或無法觀測的數(shù)據(jù)進行預(yù)測。迄今為止,關(guān)于機器學(xué)習(xí)還沒有一種被共同接受的理論框架,關(guān)于其實現(xiàn)方法大致可以分為三種[3]:
第一種是經(jīng)典的(參數(shù))統(tǒng)計估計方法。包括模式識別、神經(jīng)網(wǎng)絡(luò)等在內(nèi),現(xiàn)有機器學(xué)習(xí)方法共同的重要理論基礎(chǔ)之一是統(tǒng)計學(xué)。參數(shù)方法正是基于傳統(tǒng)統(tǒng)計學(xué)的,在這種方法中,參數(shù)的相關(guān)形式是已知的,訓(xùn)練樣本用來估計參數(shù)的值。這種方法有很大的局限性,首先,它需要已知樣本分布形式,這需要花費很大代價,還有,傳統(tǒng)統(tǒng)計學(xué)研究的是樣本數(shù)目趨于無窮大時的漸近理論,現(xiàn)有學(xué)習(xí)方法也多是基于此假設(shè)。但在實際問題中,樣本數(shù)往往是有限的,因此一些理論上很優(yōu)秀的學(xué)習(xí)方法實際中表現(xiàn)卻可能不盡人意。
第二種方法是經(jīng)驗非線性方法,如人工神經(jīng)網(wǎng)絡(luò)(ANN)。這種方法利用已知樣本建立非線性模型,克服了傳統(tǒng)參數(shù)估計方法的困難。但是,這種方法缺乏一種統(tǒng)一的數(shù)學(xué)理論。
與傳統(tǒng)統(tǒng)計學(xué)相比,統(tǒng)計學(xué)習(xí)理論(Statistical Learning Theory或SLT)是一種專門研究小樣本情況下機器學(xué)習(xí)規(guī)律的理論。該理論針對小樣本統(tǒng)計問題建立了一套新的理論體系,在這種體系下的統(tǒng)計推理規(guī)則不僅考慮了對漸近性能的要求,而且追求在現(xiàn)有有限信息的條件下得到最優(yōu)結(jié)果。V. Vapnik等人從六、七十年代開始致力于此方面研究[1],到九十年代中期,隨著其理論的不斷發(fā)展和成熟,也由于神經(jīng)網(wǎng)絡(luò)等學(xué)習(xí)方法在理論上缺乏實質(zhì)性進展,統(tǒng)計學(xué)習(xí)理論開始受到越來越廣泛的重視。
統(tǒng)計學(xué)習(xí)理論的一個核心概念就是VC維(VC Dimension)概念,它是描述函數(shù)集或?qū)W習(xí)機器的復(fù)雜性或者說是學(xué)習(xí)能力(Capacity of the machine)的一個重要指標(biāo),在此概念基礎(chǔ)上發(fā)展出了一系列關(guān)于統(tǒng)計學(xué)習(xí)的一致性(Consistency)、收斂速度、推廣性能(Generalization Performance)等的重要結(jié)論。
統(tǒng)計學(xué)習(xí)理論是建立在一套較堅實的理論基礎(chǔ)之上的,為解決有限樣本學(xué)習(xí)問題提供了一個統(tǒng)一的框架。它能將很多現(xiàn)有方法納入其中,有望幫助解決許多原來難以解決的問題(比如神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)選擇問題、局部極小點問題等);同時,這一理論基礎(chǔ)上發(fā)展了一種新的通用學(xué)習(xí)方法──支持向量機(Support Vector Machine或SVM),已初步表現(xiàn)出很多優(yōu)于已有方法的性能。一些學(xué)者認(rèn)為,SLT和SVM正在成為繼神經(jīng)網(wǎng)絡(luò)研究之后新的研究熱點,并將推動機器學(xué)習(xí)理論和技術(shù)有重大的發(fā)展。
支持向量機方法是建立在統(tǒng)計學(xué)習(xí)理論的VC維理論和結(jié)構(gòu)風(fēng)險最小原理基礎(chǔ)上的,根據(jù)有限的樣本信息在模型的復(fù)雜性(即對特定訓(xùn)練樣本的學(xué)習(xí)精度,Accuracy)和學(xué)習(xí)能力(即無錯誤地識別任意樣本的能力)之間尋求最佳折衷,以期獲得最好的推廣能力(Generalizatin Ability)。支持向量機方法的幾個主要優(yōu)點有:
1. 它是專門針對有限樣本情況的,其目標(biāo)是得到現(xiàn)有信息下的最優(yōu)解而不僅僅是樣本數(shù)趨于無窮大時的最優(yōu)值;
2. 算法最終將轉(zhuǎn)化成為一個二次型尋優(yōu)問題,從理論上說,得到的將是全局最優(yōu)點,解決了在神經(jīng)網(wǎng)絡(luò)方法中無法避免的局部極值問題;
3. 算法將實際問題通過非線性變換轉(zhuǎn)換到高維的特征空間(Feature Space),在高維空間中構(gòu)造線性判別函數(shù)來實現(xiàn)原空間中的非線性判別函數(shù),特殊性質(zhì)能保證機器有較好的推廣能力,同時它巧妙地解決了維數(shù)問題,其算法復(fù)雜度與樣本維數(shù)無關(guān);
在SVM方法中,只要定義不同的內(nèi)積函數(shù),就可以實現(xiàn)多項式逼近、貝葉斯分類器、徑向基函數(shù)(Radial Basic Function或RBF)方法、多層感知器網(wǎng)絡(luò)等許多現(xiàn)有學(xué)習(xí)算法。
統(tǒng)計學(xué)習(xí)理論從七十年代末誕生,到九十年代之前都處在初級研究和理論準(zhǔn)備階段,近幾年才逐漸得到重視,其本身也趨向完善,并產(chǎn)生了支持向量機這一將這種理論付諸實現(xiàn)的有效的機器學(xué)習(xí)方法。目前,SVM算法在模式識別、回歸估計、概率密度函數(shù)估計等方面都有應(yīng)用。例如,在模式識別方面,對于手寫數(shù)字識別、語音識別、人臉圖像識別、文章分類等問題,SVM算法在精度上已經(jīng)超過傳統(tǒng)的學(xué)習(xí)算法或與之不相上下。
本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請
點擊舉報
。
打開APP,閱讀全文并永久保存
查看更多類似文章
猜你喜歡
類似文章
機器學(xué)習(xí)算法——支持向量機(SVM)
支持向量機及其應(yīng)用
svm基本原理
文本分類入門(六)訓(xùn)練Part 3 - Jasper's Java Jacal - BlogJava
機器學(xué)習(xí)理論與實戰(zhàn)(六)支持向量機
SVM學(xué)習(xí)之五——支持向量機的原理
更多類似文章 >>
生活服務(wù)
熱點新聞
首頁
萬象
文化
人生
生活
健康
教育
職場
理財
娛樂
藝術(shù)
上網(wǎng)
留言交流
回頂部
聯(lián)系我們
分享
收藏
點擊這里,查看已保存的文章
導(dǎo)長圖
關(guān)注
一鍵復(fù)制
下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!
聯(lián)系客服
微信登錄中...
請勿關(guān)閉此頁面
先別劃走!
送你5元優(yōu)惠券,購買VIP限時立減!
5
元
優(yōu)惠券
優(yōu)惠券還有
10:00
過期
馬上使用
×