九色国产,午夜在线视频,新黄色网址,九九色综合,天天做夜夜做久久做狠狠,天天躁夜夜躁狠狠躁2021a,久久不卡一区二区三区

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
python+pandas+時間、日期以及時間序列處理

先簡單的了解下日期和時間數(shù)據(jù)類型及工具

python標準庫包含于日期(date)和時間(time)數(shù)據(jù)的數(shù)據(jù)類型,datetime、time以及calendar模塊會被經(jīng)常用到。

datetime以毫秒形式存儲日期和時間,datetime.timedelta表示兩個datetime對象之間的時間差。

給datetime對象加上或減去一個或多個timedelta,會產(chǎn)生一個新的對象

from datetime import datetimefrom datetime import timedelta
now = datetime.now()now
    datetime.datetime(2017, 6, 27, 15, 56, 56, 167000)
datetime參數(shù):datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])
delta = now - datetime(2017,6,27,10,10,10,10)delta
    datetime.timedelta(0, 20806, 166990)
delta.days
    0
delta.seconds
    20806
delta.microseconds
    166990

只有這三個參數(shù)了!

datetime模塊中的數(shù)據(jù)類型

類型 說明
date 以公歷形式存儲日歷日期(年、月、日)
time 將時間存儲為時、分、秒、毫秒
datetime 存儲日期和時間
timedelta 表示兩個datetime值之間的差(日、秒、毫秒)

字符串和datetime的相互轉(zhuǎn)換

1)python標準庫函數(shù)

日期轉(zhuǎn)換成字符串:利用str 或strftime

字符串轉(zhuǎn)換成日期:datetime.strptime

stamp = datetime(2017,6,27)
str(stamp)
    '2017-06-27 00:00:00'
stamp.strftime('%y-%m-%d')#%Y是4位年,%y是2位年
    '17-06-27'
#對多個時間進行解析成字符串date = ['2017-6-26','2017-6-27']datetime2 = [datetime.strptime(x,'%Y-%m-%d') for x in date]datetime2
    [datetime.datetime(2017, 6, 26, 0, 0), datetime.datetime(2017, 6, 27, 0, 0)]

2)第三方庫dateutil.parser的時間解析函數(shù)

from dateutil.parser import parse
parse('2017-6-27')
    datetime.datetime(2017, 6, 27, 0, 0)
parse('27/6/2017',dayfirst =True)
    datetime.datetime(2017, 6, 27, 0, 0)

3)pandas處理成組日期

pandas通常用于處理成組日期,不管這些日期是DataFrame的軸索引還是列,to_datetime方法可以解析多種不同的日期表示形式。

date
    ['2017-6-26', '2017-6-27']
import pandas as pdpd.to_datetime(date)
    DatetimeIndex(['2017-06-26', '2017-06-27'], dtype='datetime64[ns]', freq=None)

datetime 格式定義

代碼 說明
%Y 4位數(shù)的年
%y 2位數(shù)的年
%m 2位數(shù)的月[01,12]
%d 2位數(shù)的日[01,31]
%H 時(24小時制)[00,23]
%l 時(12小時制)[01,12]
%M 2位數(shù)的分[00,59]
%S 秒[00,61]有閏秒的存在
%w 用整數(shù)表示的星期幾[0(星期天),6]
%F %Y-%m-%d簡寫形式例如,2017-06-27
%D %m/%d/%y簡寫形式

pandas時間序列基礎(chǔ)以及時間、日期處理

pandas最基本的時間序列類型就是以時間戳(時間點)(通常以python字符串或datetime對象表示)為索引的Series:

dates = ['2017-06-20','2017-06-21',         '2017-06-22','2017-06-23','2017-06-24','2017-06-25','2017-06-26','2017-06-27']
import numpy as npts = pd.Series(np.random.randn(8),index = pd.to_datetime(dates))
ts
    2017-06-20    0.788811    2017-06-21    0.372555    2017-06-22    0.009967    2017-06-23   -1.024626    2017-06-24    0.981214    2017-06-25    0.314127    2017-06-26   -0.127258    2017-06-27    1.919773    dtype: float64
ts.index
    DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',                   '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],                  dtype='datetime64[ns]', freq=None)

pandas不同索引的時間序列之間的算術(shù)運算會自動按日期對齊

ts[::2]#從前往后每隔兩個取數(shù)據(jù)
    2017-06-20    0.788811    2017-06-22    0.009967    2017-06-24    0.981214    2017-06-26   -0.127258    dtype: float64
ts[::-2]#從后往前逆序每隔兩個取數(shù)據(jù)
    2017-06-27    1.919773    2017-06-25    0.314127    2017-06-23   -1.024626    2017-06-21    0.372555    dtype: float64
ts + ts[::2]#自動數(shù)據(jù)對齊
    2017-06-20    1.577621    2017-06-21         NaN    2017-06-22    0.019935    2017-06-23         NaN    2017-06-24    1.962429    2017-06-25         NaN    2017-06-26   -0.254516    2017-06-27         NaN    dtype: float64

索引為日期的Series和DataFrame數(shù)據(jù)的索引、選取以及子集構(gòu)造

方法:
1).index[number_int]

2)[一個可以被解析為日期的字符串]

3)對于,較長的時間序列,只需傳入‘年’或‘年月’可返回對應(yīng)的數(shù)據(jù)切片

4)通過時間范圍進行切片索引

ts
    2017-06-20    0.788811    2017-06-21    0.372555    2017-06-22    0.009967    2017-06-23   -1.024626    2017-06-24    0.981214    2017-06-25    0.314127    2017-06-26   -0.127258    2017-06-27    1.919773    dtype: float64
ts[ts.index[2]]
    0.0099673896063391908
ts['2017-06-21']#傳入可以被解析成日期的字符串
    0.37255538918121028
ts['21/06/2017']
    0.37255538918121028
ts['20170621']
    0.37255538918121028
ts['2017-06']#傳入年或年月
    2017-06-20    0.788811    2017-06-21    0.372555    2017-06-22    0.009967    2017-06-23   -1.024626    2017-06-24    0.981214    2017-06-25    0.314127    2017-06-26   -0.127258    2017-06-27    1.919773    dtype: float64
ts['2017-06-20':'2017-06-23']#時間范圍進行切片
    2017-06-20    0.788811    2017-06-21    0.372555    2017-06-22    0.009967    2017-06-23   -1.024626    dtype: float64

帶有重復(fù)索引的時間序列

1).index.is_unique檢查索引日期是否是唯一的

2)對非唯一時間戳的數(shù)據(jù)進行聚合,通過groupby,并傳入level = 0(索引的唯一一層)

dates = pd.DatetimeIndex(['2017/06/01','2017/06/02','2017/06/02','2017/06/02','2017/06/03'])dates
    DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-02', '2017-06-02',                   '2017-06-03'],                  dtype='datetime64[ns]', freq=None)
dup_ts = pd.Series(np.arange(5),index = dates)dup_ts
    2017-06-01    0    2017-06-02    1    2017-06-02    2    2017-06-02    3    2017-06-03    4    dtype: int32
dup_ts.index.is_unique
    False
dup_ts['2017-06-02']
    2017-06-02    1    2017-06-02    2    2017-06-02    3    dtype: int32
grouped = dup_ts.groupby(level=0).mean()
grouped
    2017-06-01    0    2017-06-02    2    2017-06-03    4    dtype: int32
dup_df = pd.DataFrame(np.arange(10).reshape((5,2)),index = dates )dup_df

0 1
2017-06-01 0 1
2017-06-02 2 3
2017-06-02 4 5
2017-06-02 6 7
2017-06-03 8 9
grouped_df = dup_df.groupby(level=0).mean()##針對DataFrame
grouped_df

0 1
2017-06-01 0 1
2017-06-02 4 5
2017-06-03 8 9

總結(jié)

該篇博客主要內(nèi)容:

1)字符串、日期的轉(zhuǎn)換方法

2)日期和時間的主要python,datetime、timedelta、pandas.to_datetime等

3)以時間為索引的Series和DataFrame的索引、切片

4)帶有重復(fù)時間索引時的索引,.groupby(level=0)應(yīng)用

本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
Pandas 時間序列 2- 日期時間索引
pandas小記:pandas時間序列分析和處理Timeseries
Python學(xué)習(xí)教程_Python學(xué)習(xí)路線:Pandas庫分析-時間序列的處理
Pandas數(shù)據(jù)處理——玩轉(zhuǎn)時間序列數(shù)據(jù)
譯】Python 金融:算法交易 (1)基礎(chǔ)入門
pandas時間序列常用方法簡介
更多類似文章 >>
生活服務(wù)
熱點新聞
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!

聯(lián)系客服