王元在作完題為《漫談哥德巴赫猜想》的報(bào)告后給數(shù)學(xué)愛好者簽名 。王林/攝
“我勸大家現(xiàn)在不要去做哥德巴赫猜想,還是把基礎(chǔ)打好。如果要搞這個(gè)問題,最低限度,你應(yīng)該有大學(xué)數(shù)學(xué)專業(yè)畢業(yè)生的知識水平,并將已有的文獻(xiàn)都看明白了;否則,就是浪費(fèi)時(shí)間。”
1978年2月17日,《人民日報(bào)》發(fā)表了徐遲的長篇報(bào)告文學(xué)——《哥德巴赫猜想》。從此,陳景潤的名字和哥德巴赫猜想一起傳遍神州大地。
近日,在一項(xiàng)面向公眾的活動(dòng)中,數(shù)論學(xué)家王元院士發(fā)表了題為《漫談哥德巴赫猜想》的演講,并向熱衷于證明這一猜想的數(shù)學(xué)愛好者提出建議和忠告。
王元表示,關(guān)于哥德巴赫猜想,報(bào)紙、電臺和電視上都介紹了很多?!暗珗?bào)紙上的宣傳也好,群眾的理解也好,都是不完整的,也是不科學(xué)的?!蓖踉f。
他談到三個(gè)方面的問題:一、什么是哥德巴赫猜想;二、為什么哥德巴赫的證明如此重要;三、目前最終證明哥德巴赫猜想的方法還沒有出來,勸大家還是把基礎(chǔ)打好,不要輕易去證明哥德巴赫猜想。
王元是我國早期從事哥德巴赫猜想證明的數(shù)學(xué)家之一,1952年從浙江大學(xué)數(shù)學(xué)系畢業(yè),經(jīng)陳建功與蘇步青推薦到中國科學(xué)院數(shù)學(xué)研究所工作,在華羅庚的指導(dǎo)下研究數(shù)論和哥德巴赫猜想。
據(jù)王元介紹,華羅庚早在20世紀(jì)30年代就開始研究哥德巴赫猜想,并得到了相當(dāng)好的結(jié)果;1966年,陳景潤證明了“1+2”是迄今為止世界上有關(guān)哥德巴赫猜想證明的最好成果。
什么是哥德巴赫猜想
1742年6月7日,德國數(shù)學(xué)家克里斯蒂安·哥德巴赫寫信給瑞士數(shù)學(xué)家萊昂哈德·歐拉,提出兩個(gè)猜想:
(1)任何一個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)之和;
(2)任何一個(gè)大于5的奇數(shù)是3個(gè)素?cái)?shù)之和。
1742年6月30日,歐拉在給哥德巴赫的回信中明確表示,他深信哥德巴赫的這兩個(gè)猜想都是正確的定理,但他不能加以證明。
這就是著名的哥德巴赫猜想。
“容易證明(2)是(1)的推論,所以最重要的是(1),這是兩個(gè)素?cái)?shù),所以我們稱它為‘1+1’,這個(gè)問題到現(xiàn)在也沒有解決。”王元說,“但是,現(xiàn)在很多人說解決了這個(gè)問題,來的信簡直堆積如山,有人搞得傾家蕩產(chǎn),這是沒有必要的,因?yàn)檫@個(gè)問題還不到解決的時(shí)候。我勸大家不要做這個(gè)問題?!?/span>
哥德巴赫猜想的內(nèi)容十分簡潔,但它的證明卻異乎尋常的困難。從哥德巴赫寫信之日起,直至1920年,并沒有一個(gè)方法可以用來證明這個(gè)問題。
1900年,在法國巴黎召開的第2屆國際數(shù)學(xué)大會(huì)上,德國數(shù)學(xué)家大衛(wèi)·希爾伯特在他著名的演說中,為20世紀(jì)的數(shù)學(xué)家建議了23個(gè)問題,而哥德巴赫猜想(1)就是他第八個(gè)問題的一部分。
1912年,在英國劍橋召開的第5屆國際數(shù)學(xué)大會(huì)上,德國數(shù)學(xué)家E·朗道將哥德巴赫猜想列為數(shù)論中按當(dāng)時(shí)數(shù)學(xué)水平不能解決的4個(gè)問題之一。
1921年,數(shù)論泰斗、英國數(shù)論學(xué)家哈羅德·哈代在德國哥德哈根數(shù)學(xué)會(huì)的演講中,宣稱猜想(1)的困難程度“是可以與數(shù)學(xué)中任何未解決的問題相比擬的”。
因此,王元說:“哥德巴赫猜想不僅是數(shù)論,也是整個(gè)數(shù)學(xué)中最著名與困難的問題之一。”他給大家展示了一幅當(dāng)年哥德巴赫寫給歐拉的信的手跡復(fù)本。
哥德巴赫猜想為何如此重要
在數(shù)學(xué)界,關(guān)于整數(shù)未解決的問題非常多,為什么哥德巴赫猜想特別重要呢?
王元說:“哥德巴赫猜想的重要性在于它是一個(gè)數(shù)學(xué)模型,以它作為模型,可以給數(shù)學(xué)帶來新的方法、新的概念和新的理論。如果一個(gè)問題的證明不能帶來新方法、新思想和新理論,那么這個(gè)問題就不重要,這樣的問題多得很。”
在接下來的演講中,王元向公眾解釋了哥德巴赫猜想證明為何能帶動(dòng)新的理論和方法的原因。
證明哥德巴赫想帶動(dòng)的第一個(gè)方法是“園法”。這是1918年,英國數(shù)學(xué)家哈代、李特伍德和印度數(shù)學(xué)家拉馬努金研究哥德巴赫猜想時(shí)提出的方法。
王元說:“他們從1918年開始做這個(gè)方法,這是一個(gè)非常有力的方法,是堆壘數(shù)論中一個(gè)強(qiáng)有力的中心方法。哈代是華羅庚先生的老師,拉馬努金在印度則被神話了。還有就是指數(shù)和的估計(jì)方法,指數(shù)和的估計(jì)從高斯開始,在最近100年中發(fā)展得很快,原因就是哥德巴赫猜想是它的推動(dòng)力之一。有了這兩個(gè)方法的帶動(dòng),基本上解決了哥德巴赫猜想(2),即每一個(gè)充分大的奇數(shù)都是三個(gè)素?cái)?shù)之和。為什么說是基本解決而不是完全解決呢,這就要完全理解‘充分大’?!?/span>
什么是“充分大”?王元說:“充分大是一個(gè)界線,大于這個(gè)界線的數(shù)則為充分大。在數(shù)學(xué)中,這個(gè)界線有時(shí)可以算出來,有時(shí)算不出來。在這里,文獻(xiàn)資料顯示,這個(gè)充分大可以算出來,是10的1000多次方,這是一個(gè)什么概念呢?現(xiàn)在計(jì)算機(jī)每秒的計(jì)算速度可以達(dá)到每秒100萬億次,這是10的14次方,10的20次方則是計(jì)算機(jī)能夠達(dá)到的最高上限;再給大家一個(gè)概念,整個(gè)宇宙的基本粒子有多少?我記得在一篇文章上說是10的50次方,那么,10的1000次方是什么概念呢?無法想象!這是一個(gè)大得不得了的數(shù)字。所以,三個(gè)素?cái)?shù)加起來等于一個(gè)奇數(shù),這是不能通過計(jì)算機(jī)做出來的,只能用數(shù)學(xué)的方法來證明。”
“現(xiàn)在,社會(huì)上只知道1+1,N+N,忘了將‘充分大’三個(gè)字放上去,這些問題都要加上‘充分大’才行?!蓖踉a(bǔ)充說。
證明哥德巴赫猜想帶動(dòng)的第二個(gè)方法是篩法。
王元說:“1918年,挪威數(shù)學(xué)家布朗改進(jìn)了有2000多年歷史的埃拉多染尼氏的篩法,證明每個(gè)充分大的偶數(shù)都是兩個(gè)素因子個(gè)數(shù)不超過9的正整數(shù)之和。我們將布朗的結(jié)果記為‘9+9’。從布朗開始,篩法發(fā)展差不多90多年了,而且還在發(fā)展,最后結(jié)果是什么呢?最后結(jié)果之一就是陳景潤的結(jié)果。陳景潤在1965年證明:每一個(gè)充分大的偶數(shù)可以表示為一個(gè)素?cái)?shù)及一個(gè)不超過兩個(gè)素?cái)?shù)之積之和。這個(gè)定理可以表示為‘1+2’?!?/span>
“陳景潤的這個(gè)定理,報(bào)紙上的宣傳也好,群眾的了解也好,都是不完整、不科學(xué)的。因?yàn)槭紫龋饷娲蠹抑v的都是陳景潤的‘1+2’,‘充分大’忘了;其次,大家說陳景潤證明的是一個(gè)素?cái)?shù)加上兩個(gè)素?cái)?shù)乘起來。這又錯(cuò)了!應(yīng)該是一個(gè)素?cái)?shù)加上一個(gè)素?cái)?shù)或者兩個(gè)素?cái)?shù)乘起來,是不超過兩個(gè)素?cái)?shù)之積之和。所以,大眾的理解是不科學(xué)的,所以我現(xiàn)在要給大家嚴(yán)格地講一講。”王元說,“陳景潤定理中的充分大有多大?我們只知道存在這樣一個(gè)界,但不能具體給出來!”
“光輝的頂點(diǎn)”
華羅庚是中國最早從事哥德巴赫猜想的數(shù)學(xué)家。1936~1938年,他赴英國劍橋大學(xué)留學(xué),在哈代的指導(dǎo)下從事數(shù)論研究,并開始研究哥德巴赫猜想,取得了很好的成果,證明了對于“幾乎所有”的偶數(shù),猜想(1)都是正確的。
1950年,華羅庚從美國回國,在中科院數(shù)學(xué)研究所組織數(shù)論研究討論班,選擇哥德巴赫猜想作為討論的主題,倡議并指導(dǎo)他的一些學(xué)生研究這一問題。他曾對學(xué)生們說:“我并不是要你們在這個(gè)問題上作出成果來。我的著眼點(diǎn)是哥德巴赫猜想跟解析數(shù)論中所有的重要方法都有聯(lián)系,以哥德巴赫猜想為主題來學(xué)習(xí),將可以學(xué)會(huì)解析數(shù)論中所有的重要方法……哥德巴赫猜想真是美極了,現(xiàn)在還沒有一個(gè)方法可以解決它?!?/span>
參加這個(gè)數(shù)論討論班的學(xué)生有王元、潘承洞和陳景潤等。出乎華羅庚的意料,學(xué)生們在哥德巴赫猜想的證明上取得了相當(dāng)好的成績。
1956年,王元證明了“3+4”;同年,原蘇聯(lián)數(shù)學(xué)家阿·維諾格拉朵夫證明了“3+3”;1957年,王元又證明了“2+3”;潘承洞于1962年證明了“1+5”;1963年,潘承洞、巴爾巴恩與王元又都證明了“1+4”;1966年,陳景潤在對篩法作了新的重要改進(jìn)后,證明了“1+2”。
1974年,由英國數(shù)學(xué)家哈勃斯坦和西德數(shù)學(xué)家李希特合著的《篩法》一書出版,書中以“陳氏定理”作為最后一章的標(biāo)題。書中寫道:“我們本章的目的是為了證明陳景潤下面的驚人定理,我們在前10章已經(jīng)付印時(shí)才注意到這一結(jié)果。從篩法的任何方面來說,它都是光輝的頂點(diǎn)?!?/span>
華羅庚曾對王元說:“在我的學(xué)生的工作中,最使我感動(dòng)的是‘1+2’?!?/span>
王元向大家展示了一張陳景潤的照片,這是日本出版的《數(shù)學(xué)100個(gè)問題》中一張陳景潤的照片?!叭毡緮?shù)學(xué)界列舉了今天數(shù)學(xué)中的100個(gè)重要問題,哥德巴赫猜想是這些問題中的重要問題之一,因?yàn)殛惥皾櫾凇?+1’的證明中最接近最終目標(biāo),所以書中刊登了他的一張照片。這里面刊登一張照片也不容易,因?yàn)闀兄挥袃蓮堉袊说恼掌?,一張是祖沖之的,一張就是陳景潤的?!蓖踉f,“當(dāng)然,對數(shù)學(xué)難題的證明作出貢獻(xiàn)只是對數(shù)學(xué)貢獻(xiàn)的一個(gè)方面?!?/span>
王元強(qiáng)調(diào):“在這里我應(yīng)該說明,這個(gè)結(jié)果最后是陳景潤做出來的,但這個(gè)結(jié)果應(yīng)該是90年來大家努力的結(jié)果,陳景潤只是走出了最后一步。所以,前面的某些人在數(shù)學(xué)史上的功勞肯定要超過他,比方說,近代篩法的創(chuàng)始人布朗等。但最后的結(jié)果是最后一個(gè)人做出來的。如果要證明‘1+1’,現(xiàn)在還比較遠(yuǎn)?!?/span>
“這一步大得不得了”
最后,王元說:“今天,我給大家講哥德巴赫猜想,并不是想鼓吹大家來做這個(gè)事情。我沒有這個(gè)意思。我給大家講一講,只是要讓你們知道這樣一個(gè)數(shù)學(xué)常識,這是我的第一個(gè)目的。第二個(gè)目的,也是更重要的一點(diǎn),就是我勸大家現(xiàn)在不要去做哥德巴赫猜想,還是把基礎(chǔ)打好。對這個(gè)問題而言,包括陳景潤在內(nèi),他辛苦了一輩子證明了‘1+2’,是他的實(shí)力和勤奮,也是他的運(yùn)氣。陳景潤的結(jié)果,報(bào)紙上的宣傳也好,外面的說法也好,都不對頭,‘充分大’沒有說,這是不對的。這個(gè)問題,基礎(chǔ)沒有打好,怎么搞?對在座的各位年輕人來說,你們現(xiàn)在打基礎(chǔ)很重要,如果要搞這個(gè)問題,最低限度,你應(yīng)該有大學(xué)數(shù)學(xué)專業(yè)的畢業(yè)生的知識水平,并將已有的文獻(xiàn)都看明白了才能做;否則,就是浪費(fèi)時(shí)間。”
如今,王元每周還要收到幾封信,寫信人強(qiáng)迫和他討論哥德巴赫猜想的問題?!拔蚁M麄儾灰臀矣懻撨@個(gè)問題,這個(gè)問題我已經(jīng)幾十年不做了,因?yàn)槲矣X得沒有什么希望再做下去了。不要認(rèn)為陳景潤做出‘1+2’,還差一步就做出‘1+1’。是的,就是這一步;但這一步根本就大得不得了,這一步比90年來走過的路還要長?!蓖踉f。
美國加州大學(xué)洛杉磯分校的華裔數(shù)學(xué)家陶哲軒是2006年數(shù)學(xué)菲爾茨獎(jiǎng)獲得者之一。王元說:“陶哲軒應(yīng)該是最近幾十年來全世界做得最好的兩位數(shù)學(xué)家之一,他的目標(biāo)之一就是要證明‘1+1’,他現(xiàn)在做出來的結(jié)果也很好,但他在很多次報(bào)告中都講,他的方法不可能證明‘1+1’?!?/span>
“連這么大的一個(gè)天才都沒有做出來,所以,我勸大家不要做這個(gè)事,現(xiàn)在不是做這個(gè)證明的時(shí)候。你們還是應(yīng)打好基礎(chǔ),把你們現(xiàn)在該學(xué)的解析幾何、代數(shù)與幾何等學(xué)好,這是最重要的?!蓖踉f。
∑編輯 | Gemini
來源 | 科學(xué)網(wǎng)
聯(lián)系客服